Способ контроля расхода экстрагента, циркулирующего в аппаратах производства очистки экстракционной фосфорной кислоты трибутилфосфатом

Изобретение относится к области контроля технологического процесса очистки экстракционной фосфорной кислоты (ЭФК), полученной путем сернокислотного разложения апатита с применением в качестве экстрагента трибутилфосфата (ТБФ). Отбирают пробы экстракта, поступающего в колонну на реэкстракцию водой, и экстрагента, выходящего из колонны реэкстракции. Пробы охлаждают до 20°С, измеряют плотности экстракта и экстрагента и количество очищенной кислоты, выходящей из колонны реэкстракции. Данные измерений используют для расчета расхода экстрагента по приводимой формуле, учитывающей определенные для системы ЭФК-ТБФ поправки на температурный коэффициент расширения объема и на увеличение объема экстрагента за счет экстракции фосфорной кислоты. Изобретение обеспечивает повышение точности и одновременно значительно ускоряет и упрощает процесс измерения.

 

Изобретение относится к области контроля технологического процесса очистки экстракционной фосфорной кислоты (ЭФК), полученной путем сернокислотного разложения Хибинского апатита с применением в качестве экстрагента трибутилфосфата (ТБФ).

Известен способ измерения расхода жидкостей с применением индукционных расходомеров [1]. Однако, применение индукционных расходомеров требует их периодической калибровки и настройки.

Другим способом нахождения расхода экстрагента, используемого в экстракционной системе и являющегося наиболее близким к предлагаемому способу, является нахождение его из уравнения материального баланса процесса реэкстракции по извлекаемому компоненту, в нашем случае извлекаемым компонентом является фосфорная кислота в расчете на Р2O5 [2]:

VЭ·yн+Vре·xн=Vрт·хк+VО·yк,

где VЭ - объем входящего в аппарат экстракта с содержанием извлекаемого компонента ун;

Vре - объем входящего в аппарат реэкстрагента с содержанием извлекаемого компонента хн;

Vрт и Vo - объемы выходящего из аппарата реэкстракта и регенерированного экстрагента с содержанием извлекаемого компонента хк и ук соответственно.

В дальнейших расчетах предполагается, что объем органической фазы после реэкстракции изменяется мало и принимается, что VЭ=Vo. Однако в системе ТБФ-ЭФК наблюдается значительное (до 10%) изменение объема органической фазы в процессе реэкстракции.

Предлагаемый способ контроля расхода экстрагента, циркулирующего в аппаратах производства очистки экстракционной фосфорной кислоты трибутилфосфатом, включает измерение плотностей при 20°С для экстракта, поступающего в колонну на реэкстракцию водой, и для экстрагента, выходящего из нее, с последующим расчетом расхода экстрагента по формуле:

где V - расход экстрагента, подаваемого в колонну на стадию экстракции, м3/ч;

G - масса очищенной кислоты, вытекающей из колонны на стадии реэкстракции, выраженной в P2O5, т/час;

ρ1 - плотность экстракта, подаваемого в колонну на стадию реэкстракции, г/см3, при 20°С;

ρ2 - плотность экстрагента, выходящего из колонны стадии реэкстракции, г/см3, при 20°С;

k - коэффициент, равный (1+β·Δt), где β - коэффициент объемного расширения экстрагента в интервале температур (20-60)°С, вычисленный по формуле: β=-0,006·ρ2+0,0072; Δt - °С, разность температур между температурой экстрагента и 20°С.

Предлагаемый способ расчета расхода экстрагента из уравнения материального баланса учитывает следующие моменты:

1. В реальной технологической экстракционной системе объем экстрагента не равен объему экстракта. Найдено экспериментальное выражение, связывающее объем экстракта и экстрагента. Множитель в знаменателе (1+ρ12) показывает, насколько увеличивается объем экстрагента в процессе экстракции и, соответственно, уменьшается объем экстракта в процессе реэкстракции.

2. В реальной технологической системе экстракция и реэкстракция проводятся при температурах, превышающих 20°С. Поэтому необходима поправка на температурный коэффициент k - множитель (1+β·Δt). В специально проведенных опытах была найдена зависимость β в интервале температур 20-60°С от плотности экстрагента, эта зависимость описывается уравнением: β=-0,006·ρ2+0,0072.

3. В предложенном способе контроля концентрации экстрагируемого вещества (фосфорной кислоты) в экстракте и экстрагенте заменены найденной экспериментально зависимостью концентрации от плотности.

Для экстракта и экстрагента определена зависимость: С=127·ρ - 124,64;

где С - содержание P2O5 в экстракте и экстрагенте, мас.%;

ρ - плотность экстракта и экстрагента, г/см3, при 20°С.

По сравнению с прототипом предложенный способ позволяет для определения расхода экстрагента использовать замеряемые при 20°С плотности экстракта и экстрагента и применять для расчета скорректированную формулу, выведенную из уравнения материального баланса с введением определенных для системы ЭФК-ТБФ поправок на температурный коэффициент расширения объема и на увеличение объема экстрагента за счет экстракции фосфорной кислоты. Кроме этого, концентрации в уравнении материального баланса заменены зависимостью концентрации от плотности, что значительно ускоряет и упрощает проведение измерений. Преимуществом метода является его простота, высокая степень надежности и практическое отсутствие материальных затрат на его выполнение, так как для расчета используются параметры, измерение которых необходимо для обеспечения стабильного ведения технологического процесса.

Пример 1. Определение расхода экстрагента в технологической цепочке очистки ЭФК с использованием ТБФ, состоящей из трех пульсационных колонн: стадии экстракции, промывки экстракта и реэкстракции. Отбирают пробы экстракта, входящего в колонну на стадию реэкстракции, и экстрагента, вытекающего из колонны. Охлаждают пробы до 20°С и замеряют плотности ареометром, ρ1=1,080 г/см3 и ρ2=1,002 г/см3; температура на выходе экстрагента из колонны составляет 50°С. Уровнемером измеряют объем кислоты, вытекающей из колонны реэкстракции в течение часа, - 3,622 м3/ч, замеряют плотность кислоты ареометром - 1,368 г/см3, измеряют концентрацию Р2O5 в очищенной кислоте - 38 мас.% титрометрическим методом. Путем расчета

определяют G - количество очищенной кислоты, вытекающей из колонны.

Подставив полученные значения в формулу для расчета, получают расход экстрагента:

Пример 2. Определение расхода экстрагента в технологической системе очистки ЭФК с использованием ТБФ, состоящей из двух пульсационных колонн стадии экстракции и реэкстракции.

Отбирают пробы экстракта, входящего в колонну на стадию реэкстракции, и экстрагента, вытекающего из колонны. Охлаждают пробы до 20°С и замеряют плотности ареометром, ρ1=1,095 г/см3 и ρ2=1,001 г/см3; температура на выходе экстрагента из колонны составляет 55°С. Уровнемером измеряют объем кислоты, вытекающей из колонны реэкстракции в течение часа, - 4,856 м3/ч, замеряют плотность кислоты ареометром - 1,390 г/см3, измеряют концентрацию Р2O5 в очищенной кислоте - 40 мас.% титрометрическим методом. Путем расчета

определяют G - количество очищенной кислоты, вытекающей из колонны.

Подставив полученные значения в формулу для расчета, получаем расход экстрагента:

Источники информации

1. И.В.Андронов «Измерение расхода жидкостей и газа». М., «Энергоиздат», 1981 г., с.40.

2. А.М.Берестовой. «Жидкостная экстракция в химической промышленности». Л., »Химия», 1977 г., с.16.

Способ контроля расхода экстрагента, циркулирующего в колоннах производства очистки экстракционной фосфорной кислоты трибутилфосфатом, включающий отбор проб экстракта, поступающего в колонну на реэкстракцию водой и экстрагента, выходящего из колонны реэкстракции, и измерение количества очищенной кислоты, выходящей из колонны реэкстракции, отличающийся тем, что пробы охлаждают до 20°С и измеряют плотности экстракта и экстрагента, с последующим расчетом расхода экстрагента по формуле

где V - расход экстрагента, подаваемого в колонну на стадию экстракции, м3/ч;

G - масса очищенной кислоты, вытекающей из колонны на стадии реэкстракции, выраженной в P2O5, т/ч;

ρ1 - плотность экстракта, подаваемого в колонну на стадию реэкстракции, г/см3, при 20°С;

ρ2 - плотность экстрагента, выходящего из колонны на стадии реэкстракции, г/см3, при 20°С;

k - коэффициент, равный (1+β·Δt), где β - коэффициент объемного расширения экстрагента в интервале температур (20÷60)°С, вычисленный по формуле

β=-0,006·ρ2+0,0072; Δt - °С, разность температур между температурой экстрагента и 20°С.



 

Похожие патенты:

Изобретение относится к экспериментальной измерительной технике и может быть использовано в энергетике, водоснабжении, коммунальном промышленном хозяйстве. .

Изобретение относится к экспериментальной технике и может быть использовано в энергетике, коммунальном хозяйстве, нефтяной, газовой, химической промышленности и т.д.

Изобретение относится к экспериментальной технике и может быть использовано в энергетике, водоснабжении коммунального, промышленного хозяйства, нефтяной, газовой промышленности и т.д.

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных газожидкостных смесей, в частности непосредственно при добыче нефти из скважин.

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах с поставщиками топлива.

Изобретение относится к области измерительной техники и может быть использовано для определения расхода газожидкостных смесей, в частности нефтегазовых смесей. .

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного расхода потока газожидкостной смеси, в частности потока нефти, содержащей свободный газ и воду.

Изобретение относится к области экспериментальной газодинамики и может быть использовано при расчете нестационарного рабочего процесса в машинах объемного действия.

Изобретение относится к измерительной технике и может быть использовано для измерения расхода порошкообразной среды в энергетике, металлургии и других отраслях промышленности.

Изобретение относится к области сельского хозяйства, в частности к сельхозмашиностроению. .

Изобретение относится к нефтедобыче и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин в системах герметизированного сбора.

Изобретение относится к области измерительной техники и может быть использовано в газовой и нефтедобывающей промышленности для измерения расхода компонентов газожидкостной смеси (ГЖС) без разделения на фракции продуктов добычи в трубопроводах непосредственно на скважинах или на коллекторных участках первичной переработки газоконденсатных или нефтяных промыслов.

Изобретение относится к области измерительной техники и может быть использовано для определения расхода газожидкостных смесей, в частности нефтегазовых смесей. .

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного расхода потока газожидкостной смеси, в частности потока нефти, содержащей свободный газ и воду.

Фарадметр // 2258921

Изобретение относится к измерительной технике, а именно к конструкциям измерительных линий узла учета нефти. .

Изобретение относится к способу и системе для измерения потока двухфазной смеси "жидкость/жидкость" или "жидкость/газ" или трехфазной смеси "жидкость/жидкость/газ", протекающей через эксплуатационный или транспортный трубопровод.

Изобретение относится к получению чистой фосфорной кислоты и моногидрофосфата кальция. .
Наверх