Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале



Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале
G01N29 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2301420:

Общество с ограниченной ответственностью "Уралтрансгаз" (ООО "Уралтрансгаз") (RU)

Использование: для определения коэффициента затухания продольных ультразвуковых колебаний в материале. Сущность: заключается в том, что осуществляют последовательное введение импульсов ультразвуковых колебаний с помощью ультразвукового дефектоскопа и прямого пьезоэлектрического преобразователя в образцы материала перпендикулярно их поверхности, прием импульсов, отраженных от донной поверхности каждого из образцов, регистрируют многократно отраженные импульсы ультразвуковых колебаний, которым присваивают порядковые номера, расчет коэффициента затухания выполняют по двум эхо-сигналам, измеренным на каждом из образцов, отношение амплитуд которых составляет величину не более 2:3 на каждом из образцов, а минимальный по амплитуде эхо-сигнал не менее чем в 2 раза превышает амплитуду шумов в электроакустическом тракте дефектоскопа, решают систему уравнений и определяют коэффициент затухания продольных ультразвуковых колебаний в материале и коэффициент отражения УЗ колебаний от границы материал - преобразователь. Технический результат: определение коэффициента затухания на двух образцах при небольшой разности их толщин, а также возможность определения коэффициента отражения ультразвуковых колебаний от границы материал - преобразователь без проведения дополнительных измерений. 2 ил.

 

Изобретение относится к области неразрушающего контроля и может найти применение при определении коэффициента затухания продольных ультразвуковых (УЗ) колебаний в материале, а также коэффициента отражения от границы материала и пьезоэлектрического преобразователя (ПЭП), например, при расчете акустических параметров при реализации метода многократных отражений (ревербераций) УЗ колебаний в многослойных конструкциях.

Известен способ определения коэффициента затухания продольных ультразвуковых колебаний в материале путем измерения амплитуды многократно отраженных импульсов УЗ колебаний с применением акустической задержки из иммерсионной среды (жидкости) или твердого материала (Ермолов И.Н. Методики измерения затухания ультразвука (Обзор). // Заводская лаборатория. - 1992 - №6 - с.28-29).

К недостаткам способа относится следующее:

1. Большая погрешность измерения, обусловленная тем, что при вводе импульсов УЗ колебаний образуются многократно отраженные импульсы УЗ колебаний в материале задержки, которые при совпадении во времени с импульсами в исследуемом материале дают ложные значения измеряемых амплитуд за счет интерференции УЗ колебаний.

2. Невозможность определения коэффициента затухания в металле на больших частотах порядка 5...10 МГц, в связи со значительным затуханием УЗ колебаний в материале задержки.

Известен способ определения коэффициента затухания продольных ультразвуковых колебаний в материале путем измерения амплитуды многократно отраженных импульсов УЗ колебаний с применением балластного пьезоэлектрического преобразователя (Ермолов И.Н. Методики измерения затухания ультразвука (Обзор). // Заводская лаборатория. - 1992 - №6 - с.27).

В известном способе определяют коэффициент отражения от границы материала и пьезоэлектрического преобразователя по снижению амплитуды импульса, отраженного от дна, при установке на донной поверхности балластного преобразователя, аналогичного по конструкции рабочему. Затем, зная коэффициент отражения, определяют коэффициент затухания по отношению амплитуд многократно отраженных импульсов.

Недостатки способа - большая погрешность определения коэффициента отражения, а вследствие этого, и коэффициента затухания, из-за практической сложности одновременного обеспечения надежного акустического контакта рабочего и балластного ПЭП с материалом и совпадения их акустических осей, а также необходимость наличия балластного ПЭП с акустическими характеристиками, идентичными рабочему ПЭП.

Известен способ определения коэффициента затухания продольных ультразвуковых колебаний в материале на двух образцах материала различной толщины, взятый нами в качестве прототипа (Ермолов И.Н. Методики измерения затухания ультразвука (Обзор). // Заводская лаборатория. - 1992 - №6 - с.26-27). На каждом из образцов получают донный импульс УЗ колебаний от границы материал - воздух (дна образца), которые регистрируют на экране дефектоскопа в виде эхо-сигналов. Измеряют амплитуды эхо-сигналов донных импульсов на каждом образце, по соотношению которых определяют коэффициент затухания.

К недостаткам способа относится то, что для достижения точности определения затухания в стальных изделиях 10% необходимо применять образцы с существенной разностью их толщины (до 500 мм).

Технической задачей изобретения является определение коэффициента затухания на объектах, из которых возможно изготовить образцы с малой разностью толщины (до 8-15 мм), что требуется, например, на стальных трубопроводах с толщиной стенки до 20 мм.

Поставленная задача решается за счет того, что в способе определения коэффициента затухания продольных ультразвуковых колебаний в материале на двух образцах материала различной толщины, включающем последовательное введение импульсов ультразвуковых колебаний с помощью ультразвукового дефектоскопа и прямого пьезоэлектрического преобразователя в образцы материала перпендикулярно их поверхности, прием импульсов отраженных от донной поверхности каждого из образцов, преобразование импульсов в эхо-сигналы, измерение амплитуды эхо-сигналов и расчет коэффициента затухания по отношению амплитуд эхо-сигналов, согласно изобретению измерение амплитуды эхо-сигналов ведут, регулируя диапазон развертки дефектоскопа и регистрируя многократно отраженные импульсы ультразвуковых колебаний, которым присваивают порядковые номера, расчет коэффициента затухания выполняют по двум эхо-сигналам, измеренным на каждом из образцов, отношение амплитуд которых составляет величину не более 2:3 на каждом из образцов, а минимальный по амплитуде эхо-сигнал не менее чем в 2 раза превышает амплитуду шумов в электроакустическом тракте дефектоскопа, решают систему уравнений и определяют коэффициент затухания продольных ультразвуковых колебаний в материале и коэффициент отражения ультразвуковых колебаний от границы материал - преобразователь:

где m, n, k, s - номера импульсов, причем m>n, k>s;

- отношение амплитуд донных импульсов на первом и втором образцах соответственно;

r1 и r2 - толщины первого и второго образцов соответственно;

ϕ(m·r1), ϕ(k·r2), ϕ(n·r1), ϕ(s·r2) - функция ослабления донного импульса в результате расширения акустического поля преобразователя для толщины m·r1, k·r2, n·r1, s·r2 соответственно;

Rм-пэп - коэффициент отражения от границы материал-преобразователь;

δ - коэффициент затухания ультразвуковых колебаний в материале.

Затухание ультразвука в материале зависит от коэффициента затухания 5 и расстояния, которое проходит ультразвуковой импульс. При введении УЗ импульса в образец материала на экране дефектоскопа можно наблюдать серию затухающих эхо-сигналов. Первый эхо-сигнал является результатом введенного импульса, отразившегося от донной поверхности образца и прошедшего путь, равный удвоенной толщине образца (2r, где r - толщина образца). Второй эхо-сигнал - результат последовательного отражения части энергии импульса от границ материал-преобразователь и материал-воздух (путь - 4r), путь третьего - 6r и т.д. Скорость затухания амплитуд эхо-сигналов преимущественно будет зависеть от коэффициента затухания и толщины образца.

В известном способе (прототипе) рассчитывают коэффициент затухания по отношению амплитуды первых эхо-сигналов, полученных на образцах разной толщины, т.к. для этого не нужно знать коэффициент отражения от границы материал - преобразователь. Однако в связи с малым коэффициентом затухания ряда материалов (например, для стали δ=5...50 дБ/м) для того, чтобы получить разность амплитуд, превышающую погрешность самих измерений, необходимо обеспечить значительную разность пути пробега импульсов применением образцов существенно различной толщины.

С этой же целью можно использовать отношение амплитуд эхо-сигналов, полученных в результате приема многократно отраженных импульсов (аналог), при этом можно использовать даже один образец, рассчитывая коэффициент затухания, например, по отношению амплитуд первого и третьего эхо-сигналов. Однако в этом случае появляется второе неизвестное - коэффициент отражения от границы материал -преобразователь Rм-пэп, т.к. импульсы будут отражаться повторно именно от нее, при этом соотношение амплитуд n- и n+1-го эхо-сигналов описывается уравнением:

где Ф - коэффициент, учитывающий неравномерность акустического поля преобразователя.

Оба неизвестных: коэффициенты отражения Rм-пэп и затухания δ, для данного вида материала и преобразователя (характеризуемого в том числе и рабочей частотой) являются величиной постоянной.

В заявляемом способе последовательно получают два уравнения на двух образцах. При этом разность толщины образцов может составлять для стали 8-15 мм, т.к. расчет ведется по отношению амплитуд эхо-сигналов от многократно отраженных импульсов. Затем из системы двух уравнений определяют сразу два неизвестных. При определенной настройке чувствительности дефектоскопа первые эхо-сигналы будут иметь амплитуду, соответствующую высоте экрана дефектоскопа, последние будут сравнимы с амплитудой шумов в электроакустическом тракте дефектоскопа. Очевидно, что для получения большей точности заявляемого способа необходимо учитывать в уравнениях эхо-сигналы, амплитуды которых различны и отношение которых составляет порядка 0,3...0,6.

Но при этом не следует учитывать в качестве минимального эхо-сигнал, амплитуда которого менее чем в 2 раза превосходит уровень шумов в электроакустическом тракте дефектоскопа, вследствие возможного влияния интерференции и, соответственно, изменения его действительной амплитуды.

Способ поясняется фиг.1-2, где на фиг.1 изображен экран дефектоскопа, показывающий вариант индикации эхо-сигналов от многократно отраженных импульсов ультразвуковых колебаний на первом образце, а на фиг.2 - соответственно на втором образце.

Способ реализуют следующим образом.

Устанавливают пьезоэлектрический преобразователь (ПЭП) последовательно на образцы материала различной толщины. Регистрируют на экране 1 дефектоскопа эхо-сигналы от многократно отраженных импульсов УЗ колебаний 2, которым присваивают порядковые номера и определяют отношение амплитуды двух эхо-сигналов на каждом из образцов. При этом эхо-сигналы выбирают таким образом, чтобы отношение их амплитуды составляло не менее чем 2:3, амплитуда минимального из этих эхо-сигналов не менее чем в 2 раза превышала уровень шумов в электроакустическом тракте дефектоскопа.

Коэффициент затухания материала и коэффициент отражения от границы пьезоэлектрический преобразователь - материал являются постоянными для образцов материала и определяют из системы двух уравнений:

где m, n, k, s - номера импульсов, причем m>n, k>s;

- отношение амплитуд донных импульсов на первом и

втором образцах соответственно;

r1 и r2 - толщины первого и второго образцов соответственно;

ϕ(m·r1), ϕ(k·r2), ϕ(n·r1), ϕ(s·r2) - функция ослабления донного импульса в результате расширения акустического поля преобразователя для толщины m·r1, k·r2, n·r1, s·r2 соответственно;

Rм-пэп - коэффициент отражения ультразвуковых колебаний от границы материал - преобразователь;

δ - коэффициент затухания ультразвуковых колебаний в материале.

Пример.

Для контроля качества соединения полиэтиленового покрытия и стальной трубы методом многократных отражений (реверберации) УЗ колебаний, вводимых со стороны трубы, необходимо определить коэффициент затухания стали и коэффициент отражения от границы пьезоэлектрический преобразователь - сталь. Образцы изготавливают из труб толщиной 20 мм, размеры образцов 50×50×12 мм и 50×50×20 мм.

Применяют серийный УЗ дефектоскоп общего назначения УД2-12 и ПЭП П111-2,5-12-002. Устанавливают ПЭП на образец толщиной 12 мм через слой контактной жидкости (воды). Регистрируют многократно отраженные от поверхности металла эхо-сигналы 2 (фиг.1). Перемещением и вращением ПЭП находят такое его положение, при котором амплитуда первого эхо-сигнала максимальна. Корректируют чувствительность дефектоскопа регуляторами «АМПЛ» и «Ослабление dB», выставляя амплитуду первого эхо-сигнала на экране 1 на заданный уровень 3 - семь клеток разметки экрана. Регуляторами «Длительность развертки» и «Задержка развертки» устанавливают эхо-сигналы от многократно отраженных импульсов в пределах экрана 1. Присваивают порядковые номера эхо-сигналам 2. По показаниям экрана дефектоскопа определяют, что, например, отношение амплитуд эхо-сигналов №1 и №3 составляет величину не более чем 2:3, при этом амплитуда эхо-сигнала №3 более чем в 2 раза превышает уровень шумов 4 в электроакустическом тракте дефектоскопа, составляющий 0,6-0,8 клетки разметки экрана 1.

Эхо-сигналы №1 и №3, полученные на образце толщиной 12 мм, используют для определения коэффициента затухания, следовательно, m=3, n=1.

По показаниям экрана дефектоскопа определяют амплитуду эхо-сигналов и вычисляют их отношение:

Устанавливают ПЭП на образец толщиной 20 мм через слой контактной жидкости (воды). Регистрируют многократно отраженные от поверхности металла эхо-сигналы 2 (фиг.2). Перемещением и вращением ПЭП находят такое его положение, при котором амплитуда первого эхо-сигнала максимальна. Корректируют чувствительность дефектоскопа регуляторами «АМПЛ» и «Ослабление dB», выставляя амплитуду первого эхо-сигнала на экране 1 на заданный уровень 3 - семь клеток разметки экрана. Регуляторами «Длительность развертки» и «Задержка развертки» устанавливают все эхо-сигналы от многократно отраженных импульсов в пределах экрана 1. Присваивают порядковые номера эхо-сигналам 2. По показаниям экрана дефектоскопа определяют, что, например, отношение амплитуд эхо-сигналов №1 и №2 составляет величину не более чем 2:3, при этом амплитуда эхо-сигнала №2 более чем в 2 раза превышает уровень шумов 4 в электроакустическом тракте дефектоскопа, составляющий 0,6-0,8 клетки разметки экрана 1.

Эхо-сигналы №1 и №2, полученные на образце толщиной 20 мм, используют для определения коэффициента затухания, следовательно, k=2, s=1.

Рассчитывают ослабление донного сигнала ϕ(r) для толщины (в мм): m·r1=3·12=36; n1·r1=1·12=12; k·r2=2·20=40; s·r2=1·20=20, при протяженности ближней зоны ПЭП П111-2,5-12-002 rб=10,5 мм по известной методике [(Ермолов И.Н. Методики измерения затухания ультразвука (Обзор). // Заводская лаборатория. - 1992 - №6 - с.26):

ϕ(36)=0,42; ϕ(12)=0,75; ϕ(40)=0,4; ϕ(20)=0,67.

Подставляют полученные значения и решают систему двух уравнений с двумя неизвестными:

Определяют, что коэффициент затухания δ=5,83 дБ/м, коэффициент отражения Rм-пэп=0,95.

Способ позволяет производить определение коэффициента затухания на двух стальных образцах при небольшой разности толщины 8-15 мм и рассчитывать коэффициент отражения ультразвуковых колебаний от границы материал - преобразователь без проведения дополнительных измерений.

Способ определения коэффициента затухания продольных ультразвуковых колебаний в материале на двух образцах материала различной толщины, включающий последовательное введение импульсов ультразвуковых колебаний с помощью ультразвукового дефектоскопа и прямого пьезоэлектрического преобразователя в образцы материала перпендикулярно их поверхности, прием импульсов, отраженных от донной поверхности каждого из образцов, преобразование импульсов в эхо-сигналы, измерение амплитуды эхо-сигналов и расчет коэффициента затухания по отношению амплитуд эхо-сигналов, отличающийся тем, что измерение амплитуды эхо-сигналов ведут, регулируя диапазон развертки дефектоскопа и регистрируя многократно отраженные импульсы ультразвуковых колебаний, которым присваивают порядковые номера, расчет коэффициента затухания выполняют по двум эхо-сигналам, измеренным на каждом из образцов, отношение амплитуд которых составляет величину не более 2:3 на каждом из образцов, а минимальный по амплитуде эхо-сигнал не менее чем в 2 раза превышает амплитуду шумов в электроакустическом тракте дефектоскопа, решают систему уравнений и определяют коэффициент затухания продольных ультразвуковых колебаний в материале и коэффициент отражения ультразвуковых колебаний от границы материал-преобразователь:

где m, n, k, s - номера импульсов, причем m>n, k>s;

- отношение амплитуд донных импульсов на первом и втором образцах соответственно;

r1 и r2 - толщины первого и второго образцов соответственно;

ϕ(m·r1), ϕ(k·r2), ϕ(n·r1), ϕ(s·r2) - функция ослабления донного импульса в результате расширения акустического поля преобразователя для толщины m·r1, k·r2, n·r1, s·r2, соответственно;

RM-пэп - коэффициент отражения ультразвуковых колебаний от границы материал - преобразователь;

δ - коэффициент затухания ультразвуковых колебаний в материале.



 

Похожие патенты:

Изобретение относится к области неразрушающего ультразвукового контроля проката и может быть использовано для выявления внутренних дефектов листов и полос из ферромагнитного материала.

Изобретение относится к неразрушающему контролю и может быть использовано при прочностных испытаниях конструкций. .

Изобретение относится к неразрушающему контролю материалов и может быть использовано при ультразвуковой дефектоскопии железнодорожных рельсов и других длинномерных изделий с использованием теневого метода контроля.

Изобретение относится к неразрушающему контролю металлических конструкций и может быть использовано при акустико-эмиссионном контроле. .

Изобретение относится к неразрушающему контролю материалов и может быть использовано для сплошного, выборочного и вторичного ультразвукового контроля всего сечения и подошвы одновременно двух нитей рельсов, уложенных в путь, в условиях умеренного климата, а также в условиях низких температур и высоких скоростей.

Изобретение относится к электромагнитным акустическим преобразователям для контроля ферромагнитных материалов, в частности, помимо прочего, газопроводов. .

Изобретение относится к технике неразрушающего контроля и диагностики материалов по сигналам акустической эмиссии (АЭ) и может быть использовано для определения степени поврежденности металлических материалов при силовом воздействии, а также в качестве критериев их прочности и ресурса работоспособности.

Изобретение относится к устройству для определения и/или контролирования объемного и/или массового расхода среды в резервуаре, в частности, в трубе, содержащему по меньшей мере один ультразвуковой преобразователь, который передает и/или принимает ультразвуковые измерительные сигналы, соединенный с ультразвуковым преобразователем элемент связи, через который ультразвуковые измерительные сигналы под заданным углом ввода, соответственно, углом вывода вводятся в резервуар, соответственно, выводятся из резервуара, и блок регулирования и оценки, который на основании измерительных сигналов, соответственно, на основании измерительных данных, которые выводятся из измерительных сигналов, определяет объемный и/или массовый расход протекающей в измерительной трубе среды.

Изобретение относится к способам неразрушающего контроля прочности центрифугированного бетона эксплуатируемых предварительно напряженных железобетонных конструкций, преимущественно напряженных свай-оболочек, пролетных строений мостов, путепроводов, гидротехнических сооружений, опор ЛЭП и других протяженных конструкций с напряжением арматуры в одном направлении и постоянно сжатых зонах.

Изобретение относится к области исследования физических свойств материалов и обеспечения контроля за состоянием технических объектов, находящихся под действием механических и/или термомеханических нагрузок в среде, характеризуемой определенной температурой и химическим составом

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения прочности бетона конструкций в процессе их строительства, реконструкции и эксплуатации

Изобретение относится к химической промышленности и может быть использовано для разделения химических элементов в растворе

Изобретение относится к устройствам, генерирующим механические колебания в ультразвуковом диапозоне

Изобретение относится к области криогенной техники, а именно к созданию трубопроводов для транспортировки криогенных жидкостей под давлением

Изобретение относится к неразрушающему акустоэмиссионному (АЭ) контролю и может быть использовано для разбраковки изделий из хрупких материалов

Изобретение относится к области приборостроения и может быть использовано для эхолокации подводных объектов при задачах ультразвукового неразрушающего контроля и ультразвуковой медицинской диагностики внутренних органов

Изобретение относится к исследованиям и анализу материалов с помощью акустической эмиссии и может быть использовано для анализа содержания газов в жидких металлах

Изобретение относится к области строительства и эксплуатации магистральных трубопроводов, в частности к технологии очистки магистральных трубопроводов методом продувки воздухом или газом с помощью очистных внутритрубных устройств типа «поршень», конкретно к определению местоположения и поиску поршня
Наверх