Способ наблюдения многолучевой интерференционной картины в отраженном свете при помощи интерферометра фабри-перо (ифп)

Способ наблюдения многолучевой интерференционной картины в отраженном свете при помощи интерферометра Фабри-Перо включает получение интерференционной картины при наклоне одного из зеркал относительно другого на угол α и анализ полученной картины. При этом производят фокусировку отраженного пучка объективом и подавление нулевого пространственного порядка при помощи поглощающей или отражающей диафрагмы. Технический результат - повышение точности измерения координат интерференционных полос при их наблюдениях в отраженном свете. 2 ил.

 

Изобретение относится к области интерференционных измерений, а конкретнее к способам повышения точности измерения в отраженном свете.

ИФП представляет собой две плоскопараллельные пластины, которые наклонены друг относительно друга под некоторым небольшим углом α. При освещении ИФП плоским пучком возникает две интерференционных картины - в проходящем и отраженном свете, причем эти картины являются дополнительными, т.е. максимумам картины в отраженном свете соответствует минимум в свете проходящем, и наоборот. В проходящем свете интерференционная картина представляет собой узкие светлые полосы, разделенные широкими темными промежутками, в отраженном свете наблюдается дополнительная картина - на сплошном светлом фоне видны узкие темные полосы.

В проходящем свете несколько спектральных линий, соответствующих различным длинам волн, дают раздельные системы полос. В отраженном свете системы широких светлых полос, соответствующих различным длинам волн, накладываются друг на друга и либо резко падает контраст картины либо она вообще пропадает. Поэтому при анализе немонохроматического излучения ИФП может быть использован только в проходящем свете.

В ряде случаев второе зеркало интерферометра является глухим, т.е. имеет коэффициент отражения почти 1, и спектральные измерения с таким интерферометром не возможны.

Известен способ наблюдения картины в ИФП [1], в котором переднее зеркало выполняют в виде несимметричной металлодиэлектрической структуры, не отражающей свет в сторону источника. Благодаря этому в отраженном свете наблюдаются узкие светлые полосы на темном фоне и становится возможным производить спектральные измерения.

Недостатками способа являются необходимость нанесения на первое зеркало интерферометра сложного металлодиэлектрического покрытия и нестойкость этого покрытия.

Наиболее близким к заявляемому способу по количеству общих признаков и по решаемой технической задаче - прототипом - является способ [2], включающий регистрацию интерференционной картины фотографическим путем, измерение предельного угла α диффузионного рассеяния фотослоя, освещение интерферограммы коллимированным световым пучком под углом, большим переднего апертурного угла наблюдательной системы, но меньшим суммы переднего апертурного угла и угла рассеивания света фотоэмульсией. В результате вышеописанного освещения интерферограммы происходит инверсия или обращение интерференционной картины: вместо темных участков появляются светлые, и наоборот.

Недостатком способа является ограниченность его функциональных возможностей, проявляющаяся в невозможности работы в реальном масштабе времени.

Задачей настоящего изобретения является расширение функциональных возможностей способа наблюдения интерференционной картины в отраженном свете при помощи ИФП.

Указанная задача достигается тем, что в данном способе световой пучок разлагают в пространственный спектр при помощи наклона одного из зеркал ИФП относительно другого зеркала на малый угол α, и согласно изобретению производят фокусировку отраженного светового пучка объективом и подавление нулевого пространственного порядка при помощи поглощающей диафрагмы, причем угол наклона α выбирают из условия:

α≥1,22λ/D,

где λ - наибольшая длина волны зондирующего излучения;

D - световой диаметр зеркал ИФП.

В заявляемом способе описаны известные в научно технической литературе отдельные признаки, однако положительный эффект обусловлен только взаимным сочетанием признаков в описанной последовательности, поэтому автор считает, что заявляемое техническое решение соответствует критерию "изобретательский уровень".

Осуществление заявленного способа поясняется с помощью чертежа, представленного на фиг.1 - оптическая схема, на фиг.2 - интерферограммы, полученные в отраженном свете.

Устройство содержит объективы 1 и 2, при помощи которых получают коллимированный пучок излучения, зеркала интерферометра 3 и 4, зеркало 5 с отверстием, при помощи которого происходит фильтрация нулвого отраженного пучка, объективы расположены конфокально, и с их общим фокусом совпадает отверстие в зеркале. Отраженные от ИФП лучи образуют последовательность колебаний:

---------------------------------

где α - амплитуда падающего колебания;

ρ и τ - коэффициенты отражения и соответственно пропускания;

ρ′ и τ′ - амплитудные коэффициенты отражения и пропускания зеркальных слоев;

Sj - j-e световое колебание, отраженное от поверхности пластины.

Если каким-то образом исключить из прогрессии ее нулевой член , то оставшаяся часть образует бесконечно убывающую геометрическую прогрессию, сумма членов которой равна:

Заменив в последнем выражении комплексные величины на действительные и умножив на комплексно-сопряженную величину, найдем распределение интенсивностей в отраженном свете:

Последнее выражение имеет точно такой же вид, что и распределение интенсивностей в прошедшем свете. Это означает, что исключение светового пучка нулевого порядка, например, при помощи фокусирующего объектива и поглощающей диафрагмы позволяет инвертировать распределение освещенностей интерференционной картины.

Экспериментальная проверка предлагаемого способа осуществлялась при помощи гелий-неонового лазера ЛГ-79, микрообъектива с фокусом 15 мм и объектива со световым диаметром 50 мм и фокусным расстоянием 400 мм из комплекта оптической скамьи ОСК-2 и двух плоскопараллельных пластинок со световым диаметром 50 мм и коэффициентом отражения 60% и 98%. Интерферограммы, полученные в отраженном свете, с неисключенной и исключенной нулевой компонентой, представлены на фиг.2а и 2б соответственно.

Предложенный способ может быть использован для измерения формы зеркал лазерных резонаторов большого диаметра и других аналогичных оптических изделий.

Источники информации

1. Терентьев И.С., Троицкий Ю.В. Необращенные интерференционные полосы при отражении света от интерферометра Фабри-Перо с асимметричным дифракционным зеркалом. Оптика и спектроскопия, 2004 г., том.97, №2, с.328-333 - аналог.

2. А.с. N 1651096. Носков М.Ф. и др. Способ интерференционного измерения формы поверхности прецизионных оптических деталей - прототип.

Способ наблюдения многолучевой интерференционной картины в отраженном свете при помощи интерферометра Фабри-Перо, включающий получение интерференционной картины при наклоне одного из зеркал относительно другого на угол α и анализ полученной картины, отличающийся тем, что производят фокусировку отраженного пучка объективом и подавление нулевого пространственного порядка при помощи поглощающей или отражающей диафрагмы, причем угол α выбирают из условия

α>1,22λ/D,

где λ - наибольшая длина волны излучения, направляемого на интерферометр Фабри-Перо;

D - световой диаметр зеркал интерферометра Фабри-Перо.



 

Похожие патенты:

Изобретение относится к спектроскопии Фурье, интерферометрии, оптоэлектронике, голографии и предназначено для электронного измерения пространственного распределения амплитуд и фаз световых волн.

Изобретение относится к измерительной технике в оптике, основанной на интерференции света, преимущественно к устройствам для измерения радиационно- и фотоиндуцированных изменений показателя преломления прозрачных сред, возникающих в результате внешнего воздействия, и может быть использовано при исследовании воздействия на оптические материалы высокоскоростных потоков частиц различного происхождения, а также потоков мощного электромагнитного излучения от мягкого рентгена до дальнего ИК.

Изобретение относится к измерительным устройствам и может быть использовано, в частности, для интерферометрических измерений в устройствах, отличающихся оптическими средствами измерения, например для исследования внутренней структуры объекта исследования и получения его изображения с помощью оптического низкокогерентного излучения при медицинской диагностике состояния отдельных органов и систем человека, в том числе in vivo, а также в технической диагностике, например для контроля технологических процессов.

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, для определения напряженно-деформированного состояния магистральных газопроводов.

Изобретение относится к измерительной технике, а именно к интерферометрии, и может быть использовано для контроля формы крупногабаритных вогнутых, выпуклых сферических и плоских поверхностей.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения оптической толщины слоев прозрачных материалов и зазоров между плоскопараллельными поверхностями элементов, один из которых должен быть прозрачным
Изобретение относится к области интерференционных измерений, а конкретнее к способам повышения точности измерений путем многократного переотражения зондирующего излучения между эталонной и исследуемой поверхностью

Изобретение относится к измерительной технике, а более конкретно к оптоэлектронным измерительным системам

Изобретение относится к области технической физики, связанной с разработкой видеоспектральной аппаратуры, предназначенной в первую очередь для решения задач дистанционного зондирования Земли с подвижных платформ

Изобретение относится к измерительной технике, в частности к устройствам для измерения перемещений и деформаций протяженных объектов с применением лазерной интерферометрии

Изобретение относится к способу исследования смещений на или в поверхности с помощью интерферометра для сейсмической разведки

Изобретение относится к области измерительной техники, а именно к способам измерения малых линейных и угловых перемещений поверхностей объектов контроля оптическими датчиками перемещений, основанными на применении интерференционных методов (оптическими лазерными интерферометрами)

Изобретение относится к контрольно-измерительной технике и может быть использовано в оптическом производстве для технологического и аттестационного контроля формы вогнутых параболических и эллиптических поверхностей оптических деталей, в том числе с большими относительными отверстиями
Наверх