Керамическая масса

Изобретение относится к производству строительных материалов и изделий, в частности стеновым керамическим изделиям, и может быть использовано при производстве керамического кирпича и камней. Техническим результатом изобретения является получение стеновых керамических изделий пониженной средней плотностью. Указанный результат изобретения достигается тем, что керамическая масса, включающая опоку, дополнительно содержит в составе в качестве поверхностно-активного вещества суперпластификатор С-3, при следующем соотношении компонентов, мас.%: опока 80-90; суперпластификатор С-3 0,2-2,0; вода остальное. 4 табл.

 

Изобретение относится к производству строительных материалов и изделий, в частности стеновым керамическим изделиям, и может быть использовано при производстве керамического кирпича и камней.

Основным сырьем для производства стеновой керамики является легкоплавкое глинистое сырье, однако черепок на его основе обладает повышенной средней плотностью 1,7-2,1 г/см3 и соответственно повышенной теплопроводностью 0,7 - 0,9 Вт/(м·К).

Известны способы изготовления стеновых керамических изделий на основе кремнистых опал-кристобалитовых пород - опок. Однако в силу того, что кремнистые породы являются камневидным сырьем, они обладают даже в измельченном виде малой пластичностью, связующей способностью и, как следствие, плохими формовочными свойствами при пластическом способе формования. Но в силу их высокой пористости керамический черепок на их основе имеет невысокую среднюю плотность 1,25-1,55 г/см3. Для улучшения формовочных свойств вводят большое количество глинистого компонента. Однако это приводит к увеличению средней плотности керамического черепка и изделия в целом.

Известна керамическая масса для получения керамического кирпича (см. А.С. СССР 800161) на основе одной из разновидностей кремнистых опал-кристобалитовых пород (диатомит, трепел, опока) 66-72%, отходов производства хлористого кальция 6-12% и подмыльного щелока 20-24%.

Недостатком этой массы является использование хлористого кальция, который вызывает быструю коррозию металлических поверхностей технологического оборудования на стадии подготовки массы и прессования изделий, а на стадии обжига часть хлора улетучивается, что вызывает высокую агрессивность дымовых газов. Кроме того, в силу высокой растворимости хлорного кальция и его повышенного содержания в керамической массе на гранях изделий образуются высолы и оплавление поверхности.

Наиболее близким техническим решением является керамическая масса на основе кремнистых пород (опок) с незначительным количеством легкоплавких примесей (В.Н.Иваненко. Строительные материалы и изделия из кремнистых пород. Будевельник, Киев, 1978, стр.10, 22-23).

Недостатком известной массы является повышенная температура обжига (до 1300°С), пониженная степень спекаемости, невысокие показатели по прочности, относительно высокое давление прессования, тонкое измельчение пресс-порошка.

Задачей настоящего изобретения является получение стеновых керамических изделий на основе кремнистых опал-кристобалитовых пород - опок, пониженной средней плотности, измельченной до крупности 0,315-2,5 мм. Учитывая неудовлетворительные формовочные свойства опок при пластическом способе формования, изделия получают полусухим способом. Помимо воды затворения пресс-порошок на основе опок включает поверхностно-активное вещество и, в частности, суперпластификатор С-3.

Сущность изобретения заключается в том, что керамическая масса, включающая опал-кристобалитовую породу - опоку, измельченную до крупности 0,315-2,5 мм, дополнительно содержит в составе в качестве поверхностно-активного вещества суперпластификатор С-3, при следующем соотношении компонентов, мас.%:

Указанная опока 80-90
Суперпластификатор С-3 0,2-2,0
Вода Остальное

Введение С-3 позволяет в значительной степени снизить внутреннее и внешнее трение при прессовании и, как следствие, достичь максимальной равноплотности керамического черепка, что, в свою очередь, значительно повышает прочность как свежеотформованных изделий, так и обожженных.

Измельченная до крупности 0,315-2,5 мм опока дает удешевление технологического процесса, уменьшение усадочных деформаций, позволяет повысить прессуемость массы.

Характеристики исходных материалов

1. Опока

Опоки - легкие плотные тонкопористые породы, состоящие в основном из мельчайших (менее 0,005 мм) частиц опал-кристобалита. Средняя плотность их составляет 1100-1600 кг/м3, пористость достигает 55% (обычно 30-40%).

Опоки - это не чистые силициты, а многокомпонентные системы. Постоянной составляющей их наряду с аморфным кремнеземом являются глинистые минералы, содержавшиеся в том или ином количестве. В качестве примеси могут присутствовать песчано-алевритовый и карбонатный материал, частички которого обычно не превышают 0,01 мм. В связи с этим выделяются различные литологические разности кремнистых пород - глинистые, песчанистые, карбонатные и смешанные. Разнообразие состава обусловливает широкий диапазон физико-технических и технологических свойств. Усредненный химический состав опок приведен в таблице 1.

Россия располагает крупнейшей сырьевой базой кремнистых опал-кристобалитовых пород, наибольшим распространением среди которых пользуются опоки. На территории России опоки широко встречаются в районах Поволжья и Дона, Западной Сибири, на юге России, в центральных и западных областях Европейской части России, Ленинградской области, Дальнем Востоке, Кольском полуострове, на Камчатке.

2. Суперпластификатор С-3 (ТУ 6-36-020429-635) получают на основе натриевых солей продукта конденсации нафталинсульфокислоты и формальдегида. Жидкость или водорастворимый порошок (нами использовался порошок) не выделяет при хранении вредных газов и паров. Водные растворы С-3 не изменяют свойств при нагревании до 85°С, пожаро- и взрывобезопасны.

Пример. Для экспериментальной проверки заявляемых составов масс были изготовлены стандартные образцы кирпича полнотелого размером 250×120×65 мм с различным соотношением вышеперечисленных компонентов. В качестве сырья были использованы глинисто-карбонатные опоки Журавского месторождения. Зерновой состав измельченных проб опок и влияние степени измельчения опок и формовочной влажности на среднюю плотность и прочность при сжатии приведены в таблицах 2 и 3.

Образцы изготовлялись следующим образом.

Предварительно опока подсушивалась до воздушно-сухого состояния, затем измельчалась на щековой дробилке (пропускалась один-три раза) до максимальной крупности 2,5-0,315 мм, после чего просеивалась на ситах с заданным размером ячеек. Затем отдозированное ПАВ растворялось в воде, и данным раствором равномерно увлажнялась измельченная опока. Приготовленный пресс-порошок вылеживался в герметичных емкостях 6-12 часов, после чего снова просеивался через сита 2,5 мм. Подготовленный пресс-порошок поступал на прессование. Удельное давление прессования составляло 200 кгс/см2. После подсушки изделия обжигались с выдержкой при максимальной температуре 1000°С 2 часа.

Изобретение применимо при производстве стеновой керамики. Средняя плотность пустотелых изделий при сохранении требований ГОСТ 530-95 может достигать 800 кг/м3.

Таблица 1

Усредненный химический состав опок
ПородаП. п.пSiO2AI2O3Fe2O3+FeOCaOMgOSO3 общ.К2ONa2OSiO2 раст-й в 5% КОН
Опоки1,7-17,662,3-89,83,2-16,51,0-7,60,1-22.80,03-5,60,0-0,550,6-3,080,02-1,7912,0-76,0

Таблица 2

Влияние степени измельчения опок и формовочной влажности на среднюю плотность и прочность при сжатии

Шифр зернового составаСодержание пластификатора С-3Формовочная влажность, %Средняя прочность, г/см3Предел прочности при сжатии, кгс/см2
I0.5121,2178,3
181,3499,0
II0.5121,2291,1
181,36149,5
III0.5121,22137,7
181,37220,1
IV0.5121,24195,9
181,41377,0

Таблица 3

Зерновой состав измельченных проб опок
Группа порошкаСодержание фракций, мм, в %
2,5-1,251,25-0,630,63-0,3150,315-0,140,14-0,071Менее 0,071
I12,7-13,810,5-12,914,8-16,313,6-15,120,6-22,321,6-27,8
II-14,3-17,915,4-17,016,5-19,421,0-24,226,5-32,8
III--18,1-21,823,5-27,023,9-26,428.8-34,5
IV---27,0-31,130,1-33,242,9-49,7

Таблица 4

Составы и свойства изделий

Состав предлагаемыйФизико-механические характеристики
Опока, %Суперпластификатор С-3, %Вода, %Rсж, кгс/см2Плотность, г/см3Коэффициент теплопроводности (λ), Вт/(м·К)
1780,121,9180,61,290,51
2800,219,8365,31,390,59
3851,014,0370,21,480,62
4902,08,0192,01,310,56
5922,55,570,41,250,47
Состав известный
180,2-92-8,0-19,890-1601,31-1,430,60

Керамическая масса, включающая опал-кристобалитовую породу - опоку, отличающаяся тем, что используется опока, измельченная до крупности 0,315-2,5 мм, и масса дополнительно содержит в составе в качестве поверхностно-активного вещества суперпластификатор С-3, при следующем соотношении компонентов, мас.%:

Указанная опока80-90
Суперпластификатор С-30,2-2,0
Водаостальное



 

Похожие патенты:
Изобретение относится к огнеупорным материалам, применяемым в металлургии, в частности, в качестве огнеупорной смеси для засыпки выпускного канала сталеразливочного ковша.
Изобретение относится к технологии производства сложнопрофильных изделий из кварцевой керамики с применением методов шликерного и центробежного литья. .
Изобретение относится к составам для горячего ремонта кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической, коксохимической и других отраслях промышленности.
Изобретение относится к керамической промышленности и может быть использовано при изготовлении фасонных изделий различного назначения с нулевой или близкой к нулю открытой пористостью, работающих в сложных климатических условиях.

Изобретение относится к производству различных строительных изделий, материалов различного назначения включая такие в частности штучные материалы как кирпич, стеновые блоки, тротуарные изделия, фасадные и половые плитки, так и различные теплоизоляционные и конструкционно-теплоизоляционные изделия в виде плит, блоков, скорлупы, сегментов, обладающих повышенными прочностными и теплоизоляционными свойствами на базе кремнеземсодержащего связующего с использованием дешевого минерального сырья и отходов различных производств.
Изобретение относится к композиционным материалам на основе стекломатриц, армированных непрерывными углеродными наполнителями, используемым для изготовления кольцевых элементов, применяющихся в авиационной, космической технике и машиностроении.
Изобретение относится к огнеупорной промышленности, а именно к производству кварцевых керамобетонных сталеразливочных огнеупоров (стаканы, защитные трубы). .
Изобретение относится к области металлургии, а именно к способам получения литых оксидных материалов на основе оксида кремния, которые могут быть использованы для получения керамических стержней сложной конфигурации для литья лопаток газотурбинных двигателей.
Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности антенных обтекателей ракет, работающих при температуре 950°С и выше без изменения радиотехнических характеристик.
Изобретение относится к технологии получения изделий из кварцевой керамики и позволяет получать крупногабаритные и сложнопрофильные изделия со стабильными физико-техническими характеристиками: чехлы термопар, тигли для плавки стоматологических сплавов
Изобретение относится к технологии электрофоретического формования керамических изделий из водных шликеров
Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных изделий для ремонта футеровки коксовых печей
Шихта // 2311391
Изобретение относится к производству керамических изделий, которые могут быть использованы для высокотемпературной изоляции промышленного оборудования, трубопроводов
Шихта // 2311392
Изобретение относится к производству керамических изделий, которые могут быть использованы для высокотемпературной изоляции промышленного оборудования, трубопроводов
Изобретение относится к производству строительных изделий
Изобретение относится к составам керамических масс, используемых в производстве кирпича

Изобретение относится к производству строительных изделий
Изобретение относится к производству стеновых керамических изделий и может быть использовано для изготовления строительных материалов
Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности антенных обтекателей ракет, работающих кратковременно при температуре до 900°С без изменения радиотехнических характеристик
Наверх