Способ упаривания высокоактивного рафината от переработки облученного ядерного топлива атомных электростанций

Изобретение относится к области обращения с отработавшим ядерным топливом. Сущность изобретения: способ упаривания высокоактивного рафината от переработки облученного ядерного топлива атомных электростанций, содержащего молибден, цирконий и другие продукты деления, заключается в том, что упаривание рафината осуществляют в присутствии в кубовом растворе щавелевой кислоты и при концентрации циркония в нем менее 5 г/л. Преимущества изобретения заключаются в его безопасности и экономичности. 1 з.п. ф-лы.

 

Изобретение относится к технологии переработки отработанного ядерного топлива, в частности к способам переработки высокоактивного рафината облученного ядерного топлива атомных электростанций (ОЯТ АЭС), включающим в себя его концентрирование упариванием перед последующим отверждением.

В производственных условиях через несколько суток после начала непрерывного упаривания рафината, содержащего молибден, цирконий и другие продукты деления, содержащиеся в ОЯТ АЭС, концентрация молибдена в кубовых растворах с кислотностью 5-8 моль/л HNO3 снижалась до 2-3 г/л; при этом образовывались осадки на основе молибдена: полимолибденовая кислота и/или молибдат циркония, серьезно затрудняющие процесс упаривания. Для предотвращения образования таких осадков был предложен способ предварительного удаления молибдена из рафината перед его упариванием либо с помощью сорбентов, либо специальной операцией осаждения молибдена совместно с цирконием [Б.Я.Зильберман, С.Я.Труханов, Е.Г.Дзекун и др. - Патент РФ №1739784, БИ №1, 1994]. Этот способ, как средство того же назначения со сходными признаками, принимается за прототип.

В то же время существуют технологические схемы, предусматривающие выведение циркония в I экстракционном цикле [Б.Я. Зильберман - Развитие Пурекс-процесса для переработки высоковыгоревшего топлива АЭС в замкнутом ЯТЦ с точки зрения локализации долгоживущих радионуклидов. Радиохимия, 2000 г., №1, стр.3-15], и, таким образом, исключающие возможность образования молибдата циркония при упаривании рафината.

Тем не менее и в отсутствие циркония устойчивость растворов молибдена в азотной кислоте невелика. По данным работы [Химия и технология редких и рассеянных элементов, ч.3. Под ред. К.А.Большакова, Москва, Высшая школа. 1976. стр.164] максимальная концентрация молибдена отмечена в растворе 5 моль/л HNO3 и не превышает 15 г/л. Для приготовления такого раствора триоксид молибдена в виде порошка постепенно растворяют в 6 моль/л азотной кислоте при температуре около 60°С. Однако повышение температуры этого раствора ведет к выпадению осадка полимолибденовой кислоты с соответствующим снижением концентрации молибдена в растворе. Данный способ концентрирования молибдена в азотной кислоте принимается за аналог.

Задачей изобретения является исключение предварительной обработки рафината с предотвращением образования осадков на основе молибдена в ходе упаривания рафинатов от переработки ОЯТ АЭС при температуре выше 60°С, так как при минимальном используемом в действующем производстве остаточном давлении 0,2 атм температура упаривания составляет 75°С, а при атмосферном давлении достигает 115°С.

Поставленная задача достигается упариванием высокоактивного рафината, содержащего молибден, цирконий и другие продукты деления, в присутствии в кубовом растворе щавелевой кислоты и при концентрации в нем циркония менее 5 г/л; при большем содержании последний образует со щавелевой кислотой нерастворимый осадок оксалата циркония.

При проведении упаривания при температуре 95°С и выше (давление в системе от 350 мм рт.ст. до атмосферного) мольное соотношение Н2С2O4/Мо в кубовом растворе должно быть не менее 2. При температуре упаривания ниже 95°С (за счет более низкого давления в системе) соотношение Н2С2O4/Мо в кубовом растворе может быть снижено до 1. В любом случае при снижении указанных мольных соотношений Н2С2O4/Мо из упариваемого раствора выпадает осадок полимолибденовой кислоты. Более высокое соотношение приводит к выпадению в осадок свободной щавелевой кислоты при охлаждении раствора.

Пример 1. В аппарате с вынесенной греющей камерой при атмосферном давлении упаривали в непрерывном режиме 300 л раствора, содержащего имитаторы продуктов деления, кроме Zr, в их соотношении в ОЯТ: 4,3 г/л Мо, 1,4 г/л Fe, 0,73 г/л Y, 0,72 г/л Са, 4,8 г/л La и 0,11 моль/л Н2С2O4 в 3 моль/л HNO3 (Присутствие Fe имитировало коррозионную примесь). Температура кипения - ˜115°С Мольное соотношение Н2С2O4/Мо в питании равнялось 2,4 с учетом убыли щавелевой кислоты в результате термического и химического ее разрушения при этой температуре. Объем кубового раствора был равен 40 л; стартовым кубовым раствором была азотная кислота с равновесной концентрацией (9 моль/л). По окончании упаривания исходного раствора был получен устойчивый кубовый раствор, в котором содержалось 30 г/л Мо, ˜55 г/л остальных металлов и 0,65 моль/л Н2С2O4 в 9 моль/л HNO3. При этом мольное соотношение Н2С2O4/Мо в кубовом растворе составляло 2,1.

Пример 2. Процесс проводили в условиях примера 1. Отличие состояло в снижении давления в системе до 150 мм рт.ст. и в уменьшении концентрации щавелевой кислоты в исходном растворе. Температура кипения кубового раствора составляла ˜75°С; разложения щавелевой кислоты при этом не происходило. Мольное соотношение Н2С2O4/Мо в питании равнялось 1,1. Устойчивый кубовый раствор содержал ˜30 г/л Мо, ˜55 г/л остальных металлов и 0,35 моль/л H2С2О4 в 9 моль/л HNO3. Мольное соотношение Н2С2O4/Мо в кубовом растворе осталось равным 1,1.

Пример 3. Процесс проводили в условиях примера 1. В исходном растворе отсутствовала щавелевая кислота. После упаривания 100 л исходного раствора в кубовом растворе появился осадок полимолибденовой кислоты, количество которого нарастало в ходе процесса. В конечном кубовом растворе содержалось около 1 г/л Мо в 9 моль/л HNO3.

Пример 4. Процесс проводили в условиях примера 1. Он отличался присутствием в исходном растворе 4,8 г/л циркония. После упаривания 50 л такого раствора в кубовом растворе появился осадок и его количество нарастало. Анализ по завершении опыта показал, что в осадке содержится практически весь Мо и Zr, и в кубовом растворе осталось около 1 г/л Мо и менее 1 г/л Zr.

Как видно из приведенного примера 3, отсутствие щавелевой кислоты ведет к резкому снижению концентрации молибдена в растворе за счет выпадения осадка полимолибденовой кислоты. Аналогичный результат наблюдается в примере 4, где вследствие образования осадков оксалата цирконила и полимолибденовой кислоты содержание молибдена в растворе также падает.

1. Способ упаривания высокоактивного рафината от переработки облученного ядерного топлива атомных электростанций, содержащего молибден, цирконий и другие продукты деления, отличающийся тем, что процесс упаривания рафината осуществляют в присутствии в кубовом растворе щавелевой кислоты и при концентрации циркония в нем менее 5 г/л.

2. Способ по п.1, отличающийся тем, что мольное соотношение щавелевой кислоты и молибдена в кубовом растворе при температуре процесса 95°С и выше составляет не менее 2, а ниже 95°С - от 2 до 1.



 

Похожие патенты:
Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла и может быть использовано в процессе переработки жидких радиоактивных отходов (ЖРО).

Изобретение относится к области переработки жидких радиоактивных отходов. .

Изобретение относится к области переработки жидких радиоактивных отходов. .

Изобретение относится к области переработки жидких радиоактивных отходов. .

Изобретение относится к переработке жидких радиоактивных отходов. .
Изобретение относится к области упаривания жидких радиоактивных отходов (ЖРО), содержащих щавелевую кислоту. .
Изобретение относится к переработке радиоактивных растворов, содержащих в своем составе различные радиоактивные компоненты, гидрофобную и/или гидрофильную органику, азотную кислоту.

Изобретение относится к технологическим процессам переработки радиоактивных растворов, образующихся в процессе регенерации облученного ядерного топлива на радиохимических заводах.

Изобретение относится к технологии переработки жидких радиоактивных отходов, образующихся на предприятиях атомной промышленности, более конкретно к способам переработки сбросных радиоактивных растворов, содержащих нитрат аммония, образующихся в процессе получения диоксида урана на радиохимических заводах.
Изобретение относится к области переработки (обезвреживания) жидких радиоактивных отходов (ЖРО), а именно к способам концентрирования, сушки и отверждения солевого концентрата (кубового остатка)
Изобретение относится к области переработки радиоактивных отходов, а точнее к технологии переработки (обезвреживания) отработавших свой ресурс радиоактивных ионообменных смол (ИОС)

Изобретение относится к радиохимической технологии, в частности, к способам регенерации азотной кислоты из хвостовых растворов переработки облученного ядерного топлива с очисткой ее в ходе ректификации от примесей более летучих кислот

Изобретение относится к технологии обезвреживания отработанных радиоактивных ионообменных смол, образующихся в процессе эксплуатации атомных энергетических объектов

Изобретение относится к технологии переработки отработанного ядерного топлива атомных электростанций (ОЯТ АЭС)

Изобретение относится к способам переработки жидких радиоактивных отходов

Изобретение относится к области переработки и очистки растворов с высоким солесодержанием, с использованием испарения и конденсации

Изобретение относится к переработке жидких радиоактивных отходов (ЖРО). Установка для переработки ЖРО содержит узел их нейтрализации, соединенный со сборной емкостью, парогенератор, цилиндрический роторно-пленочный испаритель с рубашкой и со штуцерами ввода ЖРО, отвода концентрата и вторичного пара, ротор с закрепленными по всей его длине лопатками, распределяющими ЖРО по обогреваемой поверхности испарителя в виде тонкой пленки, линию слива конденсата первичного пара, сепаратор и конденсатор. При этом испаритель выполнен с соотношением внутреннего диаметра обогреваемой части и ее высоты, равным 1:(20-26), и штуцер отвода концентрата и вторичного пара расположен в нижней части испарителя. С целью начального сброса воздуха при запуске установки линия слива конденсата первичного пара снабжена воздухосборником с пристеночным контактным термометром для контроля наличия воздуха в линии подачи первичного пара. Технический результат - возможность переработки ЖРО, содержащих ядерные делящиеся материалы высокого обогащения по урану-235 и поверхностно-активные вещества, интенсификация процесса выпаривания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу концентрирования радиоактивных отходов. Заявленный способ включает разрушение ионов аммония и/или азотной кислоты по реакции с формалином и ее регенерацию путем абсорбции и ректификации. Перерабатываемые растворы могут образовываться в различных гидрометаллургических технологиях ядерного топливного цикла. При этом переработка происходит в непрерывном режиме в выпарном аппарате с выносной греющей камерой при непрерывном упаривании раствора и естественной циркуляции кубового раствора. Под уровень раствора непрерывно подают формальдегид, вследствие чего происходит реакция разрушения азотной кислоты и/или ионов аммония, затем азотная кислота поглощается из нитрозных газов на орошаемых тарелках и образовавшиеся пары воды конденсируются, а окислы азота абсорбируются, после чего азотная кислота регенерируется по методу ректификации. Техническим результатом является проведение процесса в непрерывном режиме. 9 з.п. ф-лы, 5 ил., 6 пр.
Наверх