Способ обнаружения дефектов в материале упругой конструкции

Изобретение относится к активным методам акустического контроля упругих конструкций, использующих вынужденные механические колебания, и может найти применение в машиностроении, в частности авиадвигателестроении. Техническим результатом изобретения является использование при обнаружении дефектов в материале упругой конструкции в качестве диагностического признака параметра, для вычисления которого не требуется измерение динамической податливости конструкции, а следовательно, и величины возбуждающего воздействия. При осуществлении способа выбирают несколько собственных форм колебаний, возбуждают собственные колебания эталонной и исследуемой конструкции по каждой из выбранных форм и при этих колебаниях определяют один из параметров наблюдения для эталонной и исследуемой конструкций в первой точке наблюдения. Для каждой из этих конструкций определяют параметр наблюдения во второй точке, определяют значение собственной формы колебаний конструкции во второй точке как отношение значения параметра наблюдения в этой точке к значению параметра наблюдения в первой точке, а о возникновении дефекта судят по разности значений собственной формы колебаний во второй точке эталонной и исследуемой конструкции. 2 ил.

 

Изобретение относится к активным методам акустического контроля упругих конструкций, использующих вынужденные механические колебания, и может найти применение в машиностроении, в частности авиадвигателестроении.

Основными характеристиками собственных колебаний конструкции (модальными параметрами) являются собственные частоты колебаний, собственные формы колебаний и коэффициенты демпфирования. Собственные формы колебаний упругого тела определяются с точностью до постоянного множителя. При определении собственной формы колебаний можно условно принять, что значение этой формы (т.е. значение параметра наблюдения при колебаниях конструкции по данной форме) в некоторой точке А конструкции равно единице. Тогда значение собственной формы колебаний конструкции в любой другой точке В равно отношению значения параметра наблюдения в точке В при колебаниях конструкции по данной форме к значению параметра наблюдения в точке А.

Известен способ обнаружения дефектов в материале упругой конструкции, при котором возбуждают колебания эталонной и исследуемой конструкций, выбирают несколько форм колебаний, измеряют для этих форм резонансные частоты колебаний конструкций, а о возникновении дефекта судят по разности значений резонансных частот эталонной и исследуемой конструкций (Н.П.Алешин, В.Е.Белый, А.X.Вопилкин и др., под редакцией Н.П.Алешина. «Методы акустического контроля металлов», М., Машиностроение, 1989 г., стр.98, 102).

Недостатком данного способа является то, что резонансная частота колебаний является интегральной характеристикой упругой конструкции, т.е. характеризует конструкцию в целом, а не отдельные ее точки, и по изменению резонансной частоты можно судить о возникновении дефекта, но невозможно определить место его возникновения. Кроме того, с развитием дефекта резонансная частота изменяется медленно. Все это ведет к низкой надежности обнаружения дефекта в материале упругой конструкции.

Также известен способ обнаружения дефектов в материале упругой конструкции, при котором возбуждают колебания эталонной и исследуемой конструкции, выбирают несколько собственных форм колебаний, на выбранных формах колебаний определяют один из параметров наблюдения для эталонной и исследуемой конструкции в точке наблюдения. В качестве диагностического признака используют эквивалентные массы (Описание изобретения к патенту РФ №2190207, МПК 7 G01N 19/08, 29/00, заявл. 07.12.99 г., опубл. 27.09.02 г.)

Согласно этому способу измеряют коэффициенты внутреннего трения, действительную часть динамической податливости на частотах возбуждения, статическую податливость и определяют эквивалентные массы.

К недостаткам способа можно отнести то, что для определения эквивалентных масс необходимо измерение динамической податливости конструкции. Процедура таких измерений включает в себя измерение не только величины амплитуды изменения параметра наблюдения (виброперемещения, виброскорости, виброускорения, вибронапряжения), но и величины возбуждающего воздействия, что часто является невозможным по различным причинам, в частности по причине недоступности необходимых мест установки датчиков.

Изобретением решается задача использования при обнаружении дефектов в материале упругой конструкции в качестве диагностического признака параметра, для вычисления которого не требуется измерения динамической податливости конструкции, а следовательно, и величины возбуждающего воздействия.

Для достижения этого технического результата при осуществлении способа обнаружения дефектов выбирают несколько собственных форм колебаний, возбуждают собственные колебания эталонной и исследуемой конструкции по каждой из выбранных форм и при этих колебаниях определяют один из параметров наблюдения для эталонной и исследуемой конструкций в первой точке наблюдения.

Новым в предлагаемом способе является то, что для каждой из этих конструкций определяют параметр наблюдения во второй точке, определяют значение собственной формы колебаний конструкции во второй точке как отношение значения параметра наблюдения в этой точке к значению параметра наблюдения в первой точке, а о возникновении дефекта судят по разности значений собственной формы колебаний во второй точке эталонной и исследуемой конструкции.

Предлагаемый способ поясняется чертежами, где

на фиг.1 приведен образец без дефекта;

на фиг.2 - образец с дефектом.

Способ осуществляется следующим образом.

Выбирают несколько собственных форм колебаний, возбуждают собственные колебания эталонной и исследуемой конструкции по каждой из выбранных форм. При этих колебаниях определяют значение параметра наблюдения для эталонной и исследуемой конструкций в двух точках: первой точке А и второй точке В. В качестве параметра наблюдения используют виброперемещения, виброскорости, виброускорения или вибронапряжения. Значения параметра наблюдения (виброперемещения, виброскорости, виброускорения, вибронапряжения) при колебаниях конструкции по собственной форме измеряют, например, виброизмерительным комплексом АВДИ-1. Определяют значение собственной формы колебаний конструкции в точке В как отношение значения параметра наблюдения в точке В к значению параметра наблюдения в точке А. О возникновении дефекта судят по разности значений собственной формы колебаний эталонной и исследуемой конструкции.

ПРИМЕР

Рассмотрены собственные формы колебаний жестко закрепленного эталонного образца (фиг.1) и образца с дефектом (фиг.2). В расчетах образцы были закреплены за широкий конец. При этом область образцов, совершающая колебания (рабочая часть образца), представляла собой прямоугольный брус размером 0,110×0,015×0,0025 м. На основе вычислительного комплекса ANSYS определены собственные формы колебаний эталонного образца и образца с дефектом. Дефект моделировался изменением модуля упругости материала в зоне его возникновения (фиг.2). При этом рассмотрены первые две поперечные формы колебаний и определены следующие величины: y1(A), y2(A) - амплитуды колебаний точки А эталонного образца по его первой и второй форме; - амплитуды колебаний точки А образца с дефектом по его первой и второй форме; у11), - амплитуды колебаний точки В1 эталонного образца и образца с дефектом по первой форме; у22), - амплитуды колебаний точки В2 эталонного образца и образца с дефектом по второй форме. На основе полученных результатов получены следующие значения собственных форм колебаний , эталонного образца и , образца с дефектом:

(первая форма),

(вторая форма).

Анализ полученных результатов показывает, что изменения амплитуд колебаний точек B1 и В2 при возникновении дефекта составляет:

(первая форма),

(вторая форма).

Если принять за критерий обнаружения дефекта изменение диагностического признака не менее чем на 10%, то данный дефект можно считать обнаруженным.

Предлагаемое решение позволяет значительно упростить способ обнаружения дефектов за счет исключения необходимости измерения величины возбуждающего воздействия, что часто является невозможным по различным причинам, в частности по причине недоступности необходимых мест установки датчиков.

Способ обнаружения дефектов в материале упругой конструкции, при котором выбирают несколько собственных форм колебаний, возбуждают собственные колебания эталонной и исследуемой конструкции по каждой из выбранных форм и при этих колебаниях определяют один из параметров наблюдения для эталонной и исследуемой конструкций в первой точке наблюдения, отличающийся тем, что для каждой из этих конструкций определяют параметр наблюдения во второй точке наблюдения, определяют значение собственной формы колебаний конструкции во второй точке как отношение значения параметра наблюдения в этой точке к значению параметра наблюдения в первой точке, а о возникновении дефекта судят по разности значений собственной формы колебаний во второй точке эталонной и исследуемой конструкции.



 

Похожие патенты:

Изобретение относится к средствам для контроля целостности конструкции, расположенной в окружающей среде, содержащей текучую среду под давлением окружающей среды.

Изобретение относится к области испытательной техники и предназначено для обнаружения и измерения распространения дефектов в детали или конструкции. .

Изобретение относится к активным методам акустического контроля упругих конструкций, использующих вынужденные механические колебания, и может найти применение, например, в двигателестроении.

Изобретение относится к неразрушающему контролю длинномерных изделий, в том числе труб, и может быть использовано при сканировании наружной поверхности длинномерных изделий.

Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, а именно для контроля профиля полости уложенных магистральных нефтегазопродуктопроводов путем пропуска внутри контролируемого трубопровода устройства с установленными на корпусе средствами измерения дефектов полости трубопровода, средствами обработки и хранения данных измерений, продвигающегося внутри трубопровода за счет транспортируемого по трубопроводу потока жидкости (газа).

Изобретение относится к нефтяному машиностроению и может быть использовано, например, при изготовлении насосных штанг. .

Изобретение относится к испытательной технике и позволяет проводить исследования состояния объекта в условиях невесомости. .

Изобретение относится к эксплуатации трелевочных волоков и может быть использовано для получения статистических характеристик волоков в целях оценки качества поверхности волоков.

Изобретение относится к области измерительной техники и может быть использовано в микроэлектронике при производстве интегральных микросхем на активных и пассивных подложках и в дифракционной оптике при производстве элементов дифракционной оптики

Изобретение относится к неразрушающему контролю внутренних дефектов изделий, а именно к способам контроля валов, в частности для обнаружения накопленных усталостных повреждений коленчатых валов автотракторной и компрессорной техники

Изобретение относится к методам использования вакуумных датчиков для выполнения "мониторинга за техническим состоянием структуры" (SHM) и способам несъемного соединения материала чувствительного элемента с корпусом согласно преамбуле пунктов формулы 1, 15, 46 и 47

Изобретение относится к неразрушающему контролю упругих твердых тел акустическими методами и может найти применение в строительстве и в машиностроении, в частности авиадвигателестроении

Изобретение относится к области неразрушающего контроля и предназначено для использования в диагностике состояния механизмов и машин, испытывающих статические и динамические нагрузки и требующих повышенных мер контроля и обеспечения безопасности, например, погрузо-разгрузочных строительных машин (башенных кранов)

Изобретение относится к области испытания материалов на усталость и предназначено для определения момента появления в металле необратимых повреждений, характеризующегося образованием в металле микротрещин в процессе его нагружения. Сущность: осуществляют вырезку образца из испытываемого металла, его термообработку, вырезку из термообработанного образца серии базовых образцов, испытание этих образцов на ударную вязкость, обработку полученных значений ударной вязкости методом наименьших квадратов с получением среднего значения ударной вязкости, которое принимается за базовое. Из листа испытываемого металла вырезают другую серию образцов для проведения усталостных испытаний, при этом первый образец из этой серии испытывают до разрушения, второй образец нагружают в течение количества циклов, равных половине количества циклов до разрушения первого образца, третий и последующие образцы из этой серии нагружают, изменяя количество циклов нагружения от образца к образцу. Каждый образец, кроме первого, после нагружения термообрабатывают на режимах, которые применялись при получении базового значения ударной вязкости, после чего из каждого из них вдоль направления прикладываемой нагрузки вырезают серии образцов с размерами, аналогичными размерам базовых образцов для испытания на ударную вязкость. Осуществляют испытания полученных образцов на ударную вязкость, полученные значения ударной вязкости обрабатывают методом наименьших квадратов с получением среднего значения ударной вязкости для каждой из серий. Анализируют полученные средние значения ударной вязкости, сравнивая их с базовым, и определяют диапазон количества циклов нагружения металла, в котором начинается падение значений ударной вязкости термообработанных образцов, который характеризует момент образования в металле микротрещин. Технический результат: возможность получать сведения не только об общей долговечности металла при определенных параметрах нагружения, но и о моменте образования в металле необратимых повреждений. 2 ил.

Изобретение относится к области измерительной техники и может быть использовано в микроэлектронике при производстве интегральных микросхем на активных и пассивных подложках и в дифракционной оптике при производстве дифракционных микропрофилей. Способ заключается в том, что производят сдвиг подложки-зонда по поверхности исследуемой подложки, которые расположены под углом друг к другу. Этот угол создают в сторону движения подложки-зонда. Сдвиг подложки-зонда осуществляют путем увеличения угла между исследуемой поверхностью и плоскостью горизонта, по углу, при котором происходит сдвиг подложки-зонда, судят о чистоте поверхности подложки, при этом в процессе скольжения подложки-зонда выполняют неравенство γ≤±16°, где γ - угол между биссектрисой угла при вершине контактирующей грани подложки-зонда и траекторией скольжения. Техническим результатом является обеспечение возможности устранения механических разрушений поверхности и увеличение точности процесса измерения. 6 ил.
Наверх