Способ определения параметров потока флюида и устройство для его реализации

Изобретение относится к области средств и методов измерения, преимущественно косвенного измерения параметров жидких сред, и может быть использовано для определения параметров потока смеси вода - нефть преимущественно при определении скорости потока, его температуры, а также соотношения нефти и воды в потоке. Техническим результатом изобретения является оптимизация размещения оборудования, применяемого для перекачивания потока флюида, и упрощение процесса определения параметров потока флюида в скважине - соотношения нефти и воды, а также расхода потока. Для этого в потоке флюида размещают протяженный нагреватель, ориентированный по ходу потока флюида. На противоположных концах нагревателя устанавливают тепловые датчики, выполненные с возможностью дистанционного съема информации. С помощью последних измеряют температуру на границе раздела фронтальная поверхность нагревателя - зона потока и на границе раздела тыльная поверхность нагревателя - зона потока. С использованием измеренных значений для обеих границ раздела рассчитывают разницу температур между нагревателем и потоком и с ее учетом расчетным путем определяют соотношения воды и нефти в потоке флюида и расход с помощью математических или графических зависимостей. Для измерения температуры потока вне зоны действия нагревателя устройство может иметь третий тепловой датчик. Приведены различные варианты выполнения нагревателя. 2 н. и 9 з.п. ф-лы.

 

Изобретение относится к области средств и методов измерения, преимущественно косвенного измерения параметров жидких сред, и может быть использовано для определения параметров потока смеси вода - нефть преимущественно при определении скорости потока, его температуры, а также соотношения нефти и воды в потоке.

Известен (SU, авторское свидетельство 1645902) способ определения скорости потока жидкости или газа. Согласно известному способу проводят предварительную градуировку перегреваемого чувствительного элемента термоанемометра при максимальном и минимальном значениях скорости потока с последующей регистрацией выходного сигнала термоанемометра, по которому определяют искомую скорость потока, при этом для повышения точности измерения предварительную калибровку чувствительного элемента термоанемометра проводят для максимального и минимального значения скоростей потока при различных температурах потока.

Недостатком известного способа следует признать его малую область применения - только определение скорости потока.

Известен также (RU, патент 2263210) способ определения профилей давления в стволах скважин, выкидных линиях и трубопроводах, несущих однофазные и многофазные флюиды. Согласно известному способу поток флюида временно перекрывают, полностью или частично, быстродействующей задвижкой и непрерывно регистрируют давление в точке, находящейся на небольшом расстоянии от задвижки по направлению против течения потока, и, используя соотношения, известные из уравнения Дарси-Вейсбаха для определения потерь давления на трение, определяют искомый параметр потока.

Недостатком известного способа следует признать его малую область применения - только определение профиля давления потока.

Известен (SU, авторское свидетельство 1138487) способ измерения скорости потока флюида в затрубном пространстве скважины, включающий нагрев участка ствола скважины нагревателем и определение интенсивности теплообмена между жидкостью в трубе и затрубной средой, причем осуществляют нагрев фиксированного объема жидкости в трубе при поддержании постоянной разности температур нагреваемой жидкости и затрубной среды и по величине потребляемой нагревателем энергии определяют скорость потока.

Недостатком известного способа следует признать его малую область применения - только определение скорости потока флюида.

Известна (RU, патент 2122724) конструкция устройства для измерения состава флюида, протекающего через напорный трубопровод, содержащая трубопровод, выполненный с возможностью подсоединения к напорному трубопроводу для прохождения потока флюида через трубопровод, радиоактивный источник, расположенный с возможностью прохождения излучения от источника через стенку трубопровода и поток флюида, радиационный детектор для детектирования излучения, проходящего через стенку трубопровода и поток флюида, и средство для генерации сигнала, соответствующего излучению, детектируемому детектором. Указанный детектор представляет собой твердотельную детекторную конструкцию, которая снабжена, по крайней мере, двумя поверхностями, детектирующими излучение, и фильтром, который расположен между радиоактивным источником и первой из детектирующих поверхностей, при этом фильтр задерживает по существу излучение с низкой энергией и пропускает излучение с высокой энергией, а стенка трубопровода состоит из смолы, армированной волокнами.

Недостатком известного устройства следует признать его конструктивную сложность, а также ограниченную область применения - определение только состава потока флюида.

Известна (RU, патент 2122724) конструкция устройства для измерения состава флюида, протекающего через напорный трубопровод, содержащая трубопровод, выполненный с возможностью подсоединения к напорному трубопроводу для прохождения потока флюида через трубопровод, радиоактивный источник, расположенный с возможностью прохождения излучения от источника через стенку трубопровода и поток флюида, радиационный детектор для детектирования излучения, проходящего через стенку трубопровода и поток флюида, и средство для генерации сигнала, соответствующего излучению, детектируемому детектором. Указанный детектор представляет собой твердотельную детекторную конструкцию, которая снабжена, по крайней мере, двумя поверхностями, детектирующими излучение, и фильтром, который расположен между радиоактивным источником и первой из детектирующих поверхностей, при этом фильтр задерживает по существу излучение с низкой энергией и пропускает излучение с высокой энергией, а стенка трубопровода состоит из смолы, армированной волокнами.

Недостатком известного устройства следует признать его конструктивную сложность, а также ограниченную область применения - определение только состава потока флюида.

Известны (SU, авторское свидетельство 1188583) способ определения плотности жидкой фазы газоводонасыщенной нефти и устройство для его осуществления, которые могут быть признаны ближайшими аналогами заявленного технического решения. Согласно известному способу жидкую фазу газоводонасыщенной нефти пропускают через проточную измерительную камеру псевдозамкнутого объема, измеряют температуру, давление и плотность жидкой фазы в измерительной камере, изометрически с постоянной частотой и амплитудой, исключающей растворение газа в жидкой фазе, изменяют объем измерительной камеры, измеряют амплитуду пульсаций давления жидкой фазы в измерительной камере и определяют искомый параметр расчетным путем. Используемое для реализации способа устройство содержит проточную измерительную псевдозамкнутую камеру, механизм возбуждения пульсаций давления в измерительной камере, а также датчик средней плотности жидкой фазы, датчик давления и датчик температуры, подключенные к вычислительному блоку.

Недостатком известного технического решения следует признать его сложность.

Техническая задача, решаемая посредством предлагаемого технического решения, состоит в упрощении процесса определения параметров потока флюида - соотношения нефти и воды, а также расход потока.

Технический результат, получаемый при реализации предложенного технического решения, состоит в оптимизации условий размещения оборудования, применяемого для перекачивания потока флюида.

Для достижения указанного технического результата предложено использовать способ определения параметров потока флюида и устройство для его реализации.

Согласно предлагаемому способу размещают в потоке флюида протяженный нагреватель, ориентированный по ходу потока флюида, измеряют температуру потока флюида, разогревают нагреватель и измеряют температуру на границе раздела фронтальная поверхность нагревателя - зона потока и на границе раздела тыльная поверхность нагревателя - зона потока, для обеих границ раздела с использованием измеренных значений рассчитывают разницу температур между нагревателем и потоком, а величину соотношения воды и нефти в потоке флюида и расход определяют расчетным путем - с использованием математических зависимостей или графических зависимостей.

Для реализации указанного способа предложено использовать устройство для определения параметров потока флюида, содержащее нагреватель, имеющий протяженную форму, при этом на противоположных концах нагревателя установлены два тепловых датчика, выполненные с возможностью дистанционной передачи измеренной информации. Третий тепловой датчик может быть дополнительно установлен с возможностью измерения температуры потока флюида вне зоны действия нагревателя. Третий тепловой датчик используют в случае необходимости постоянного контроля параметров потока флюида, когда невозможно использовать для измерения исходной температуры потока тепловые датчики, расположенные на нагревателе, который в момент измерения исходной температуры выключен.

Согласно одному из вариантов реализации устройства нагреватель содержит протяженный корпус, выполненный из теплоизоляционного материала, на поверхность которого намотан проводник, выводы которого выполнены с возможностью подключения к источнику электрического питания, при этом на слой проводника нанесено теплопропускающее изоляционное покрытие, на противоположных торцах корпуса установлены тепловые датчики. Предпочтительно проводник закреплен в спиральном пазу, выполненном в поверхности корпуса. Согласно второму варианту реализации заявленного устройства нагреватель содержит протяженный трубчатый корпус, выполненный из ферромагнитного материала, внутри корпуса расположен пластинчатый ферромагнитный сердечник, на который навит электрический проводник, выходы которого выполнены с возможностью подключения к источнику электрического питания, торцы корпуса закрыты ферромагнитными кожухами, на наружных поверхностях которых закреплены тепловые датчики, при этом между ферромагнитными кожухами и пластинчатым ферромагнитным сердечником установлены ферромагнитные соединительные элементы. Согласно третьему варианту реализации предлагаемого устройства нагреватель содержит протяженный трубчатый корпус, выполненный из ферромагнитного материала, внутри корпуса расположен ферромагнитный сердечник, на который навит электрический проводник, выходы которого выполнены с возможностью подключения к источнику электрического питания, торцы корпуса закрыты ферромагнитными кожухами, на наружных поверхностях которых закреплены тепловые датчики, при этом между ферромагнитными кожухами и пластинчатым ферромагнитным сердечником установлены ферромагнитные соединительные элементы. При этом предпочтительно корпус выполнен в виде набора из ферромагнитных колец, между которыми установлены кольца из теплоизоляционного материала, причем ширина колец из теплоизоляционного материала меньше, чем ширина ферромагнитных колец. Согласно еще одному варианту реализации предложенного устройства нагреватель содержит протяженный корпус, внутренний объем которого разделен теплоизоляционной перегородкой, при этом в каждом образовавшемся отсеке корпуса размещен теплопроводный сердечник, на поверхность которого намотан электрический проводник, а на торцевых поверхностях корпуса установлены теплопроводные корпуса, на которых закреплены тепловые датчики.

Настоящее изобретение основано на экспериментально установленном явлении зависимости величины теплового потока с поверхности нагревателя, помещенного в поток флюида, от состава флюида, а также расхода потока флюида (скорости движения потока), а также степени совершенства потока. Коэффициент теплоотдачи поверхности нагревателя, помещенного в жидкую среду (флюид), обратно пропорционален толщине теплового пограничного слоя. Как известно, при обтекании цилиндра (предпочтительная форма корпуса нагревателя) толщина пограничного слоя во фронтальной точке (область высоких локальных чисел Re) много меньше, чем на тыльной части цилиндра (застойная зона, область малых локальных чисел Re). Таким образом, наибольший теплосъем (а значит, и падение температуры) отмечен в передней точке. Это приводит к существенной разнице показаний, наблюдаемых на приборе, регистрирующем информацию от тепловых датчиков. Решая обратную задачу по разнице теплосъема в фронтальной и тыльной поверхностях нагревателя, можно определить как число Re, характеризующее расход потока флюида, так и число Pr, характеризующее его состав.

Коэффициент теплоотдачи определяется как α≡q/ΔT, где q тепловой поток, - разница температур.

Пусть δT толщина теплового пограничного слоя, тогда тепловой поток можно оценить по формуле:

, здесь k коэффициент теплопроводности.

Таким образом, коэффициент теплоотдачи можно оценить по формуле:

α˜k/δT

Разницу температурных режимов между двумя точками потока флюида можно оценить как:

αAB˜δT|BT|A

На практике для упрощения расчетов строят графическую зависимость Q=f(ΔT), β=g(ΔT), по которой и определяют расход Q и содержание нефти β. Предпочтительно при построении указанной зависимости учитывают характеристики нефти, входящей в состав потока флюида.

Используемые при реализации способа устройства обладают следующими особенностями.

Для варианта реализации, когда нагреватель содержит протяженный корпус, выполненный из теплоизоляционного материала, на поверхность которого намотан проводник, предпочтительно расположенный в спиральном пазу, выводы которого выполнены с возможностью подключения к источнику электрического питания, при этом на слой проводника нанесено теплопропускающее изоляционное покрытие, на противоположных торцах корпуса установлены тепловые датчики, указанный корпус может быть выполнен из материала с высокой термостойкостью (пластмассы или керамики). Конструкция обеспечивает равномерный тепловой поток по всей поверхности нагревателя, причем весь тепловой поток уходит наружу, что приводит к достаточно точному определению искомых параметров флюида. Однако при эксплуатации его в скважине возникает опасность пластической деформации наружного слоя, а также его эрозия.

Для варианта, когда нагреватель содержит протяженный трубчатый корпус, выполненный из ферромагнитного материала, внутри корпуса расположен пластинчатый ферромагнитный сердечник, на который навит электрический проводник, выходы которого выполнены с возможностью подключения к источнику электрического питания, торцы корпуса закрыты ферромагнитными кожухами, на наружных поверхностях которых закреплены тепловые датчики, при этом между ферромагнитными кожухами и пластинчатым ферромагнитным сердечником установлены ферромагнитные соединительные элементы, тепловой эффект создает вихревой ток в наружном слое. Внутренний навитой проводник предназначен для пропускания переменного электрического тока, создающего магнитный поток в центральном пластинчатом ферромагнитном сердечнике. Сердечник устроен таким образом (практика изготовления пластинчатых сердечников для преобразователей напряжения), что индуцированные вихревые токи слабы, что обеспечивает низкое теплообразование в сердечнике. Магнитопровод состоит из центрального пластинчатого сердечника, двух полусфер в крайних точках и полой наружной трубы. Все эти элементы изготовлены из ферромагнитного материала с высокой магнитной проницаемостью, что обеспечивает создание интенсивного магнитного потока. При подобной конструкции устройства токи создают контур в корпусе цилиндра, равномерно нагревающий его.

При использовании устройства по третьему варианту по трубе циркулирует сильный индуцированный ток, вырабатывающий значительное количество тепла. Для избежания магнитного насыщения поперечное сечение металла корпуса должно быть соизмеримо с сечением внутреннего сердечника. Для уменьшения осевого теплового потока наружный цилиндрический корпус желательно изготавливать как набор колец из металла и теплоизоляционного материала.

При использовании четвертого варианта реализации устройства нагревают только две крайних точки. Нагрев в сердечнике может быть обеспечен любым способом (за счет индукционного эффекта или резистивного нагрева), при этом перенос тепла с одного конца устройства на другой сведен до минимума.

При реализации способа с использованием любого варианта предложенного устройства, в частности, при определении параметров потока флюида в скважине, последовательно определяют следующие операции:

1. Прибор устанавливают в центр трубы.

2. Измеряют температуру потока флюида Twell (это температура в любой точке устройства при выключенном нагревателе).

3. Включают нагреватель с заданной мощностью на время τheat. Это время экспериментально определяют как наибольшее время, за которое устанавливается стационарное распределение температуры на устройстве.

4. Измеряют температуру на фронтальной Tf и тыльной Тb поверхностях нагревателя.

5. Вычисляют разницу между температурами на приборе и температурой скважинной жидкости:

ΔTf=Tf-Twell, ΔTb=Tb-Twell.

6. Если ΔTf меньше заранее установленной величины (точность измерения), то осуществляют возврат к п.3-6 и увеличивают мощность до тех пор, пока ΔТf не превысит минимально допустимой величины.

7. По эталонному графику зависимости расхода от разницы температур ΔТf, ΔТb для чистой воды и чистой нефти вычисляют следующие значения:

Qw(f.) - расход чистой воды, соответствующий разнице температуры ΔТf,

Qw(b) - расход чистой воды, соответствующий разнице температуры ΔТb,

Qo(f) - расход чистой нефти, соответствующий разнице температуры ΔТf,

Qo(b) - расход чистой нефти, соответствующий разнице температуры ΔТb,

8. Если Qw(f)=Qw(b) - значит, скважинная жидкость чистая вода,

Если Qo(f)=Qo(b) - значит, скважинная жидкость чистая нефть,

Если Qo(f)≠Qo(b) и Qw(f)≠Qw(b) - значит, скважинная жидкость смесь воды и нефти.

9. Если скважинная жидкость - смесь, то применяется либо графический метод (семейство экспериментальных кривых соответствующим смеси), либо математические соотношения для определения как расхода, так и соотношения нефти и воды, например по следующим упрощенным формулам:

Применение предлагаемого технического решения обеспечивает оперативный контроль параметров потока флюида, что позволяет оптимизировать размещение скважинного оборудования, а также режимов перекачивания потока флюида по трубопроводам.

1. Способ определения параметров потока флюида, включающий измерение его температуры, отличающийся тем, что размещают в потоке флюида протяженный нагреватель, ориентированный по ходу потока флюида, измеряют температуру потока флюида, разогревают нагреватель и измеряют температуру на границе раздела фронтальная поверхность нагревателя - зона потока и на границе раздела тыльная поверхность нагревателя - зона потока, для обеих границ раздела с использованием измеренных значений рассчитывают разницу температур между нагревателем и потоком, а величину соотношения воды и нефти в потоке флюида и расход определяют расчетным путем.

2. Способ по п.1, отличающийся тем, что расчет проводят с использованием математических зависимостей.

3. Способ по п.1, отличающийся тем, что расчет проводят с использованием графических зависимостей.

4. Устройство для определения параметров потока флюида, содержащее нагреватель, отличающееся тем, что нагреватель имеет протяженную форму и ориентирован по ходу потока флюида, при этом на противоположных концах нагревателя установлены два тепловых датчика, выполненные с возможностью дистанционного съема информации.

5. Устройство по п.4, отличающееся тем, что оно дополнительно содержит третий тепловой датчик, установленный с возможностью измерения температуры потока флюида вне зоны действия нагревателя.

6. Устройство по п.4, отличающееся тем, что нагреватель содержит протяженный корпус, выполненный из теплоизоляционного материала, на поверхность которого намотан проводник, выводы которого выполнены с возможностью подключения к источнику электрического питания, при этом на слой проводника нанесено теплопропускающее изоляционное покрытие, на противоположных торцах корпуса установлены тепловые датчики.

7. Устройство по п.6, отличающееся тем, что проводник закреплен в спиральном пазу, выполненном в поверхности корпуса.

8. Устройство по п.4, отличающееся тем, что нагреватель содержит протяженный трубчатый корпус, выполненный из ферромагнитного материала, внутри корпуса расположен пластинчатый ферромагнитный сердечник, на который навит электрический проводник, выходы которого выполнены с возможностью подключения к источнику электрического питания, торцы корпуса закрыты ферромагнитными кожухами, на наружных поверхностях которых закреплены тепловые датчики, при этом между ферромагнитными кожухами и пластинчатым ферромагнитным сердечником установлены ферромагнитные соединительные элементы.

9. Устройство по п.4, отличающееся тем, что нагреватель содержит протяженный трубчатый корпус, выполненный из ферромагнитного материала, внутри корпуса расположен ферромагнитный сердечник, на который навит электрический проводник, выходы которого выполнены с возможностью подключения к источнику электрического питания, торцы корпуса закрыты ферромагнитными кожухами, на наружных поверхностях которых закреплены тепловые датчики, при этом между ферромагнитными кожухами и пластинчатым ферромагнитным сердечником установлены ферромагнитные соединительные элементы.

10. Устройство по п.9, отличающееся тем, что корпус выполнен в виде набора из ферромагнитных колец, между которыми установлены кольца из теплоизоляционного материала, причем ширина колец из теплоизоляционного материала меньше, чем ширина ферромагнитных колец.

11. Устройство по п.4, отличающееся тем, что нагреватель содержит протяженный корпус, внутренний объем которого разделен теплоизоляционной перегородкой, при этом в каждом образовавшемся отсеке корпуса размещен теплопроводный сердечник, на поверхность которого намотан электрический проводник, а на торцевых поверхностях корпуса установлены теплопроводные корпуса, на которых закреплены тепловые датчики.



 

Похожие патенты:

Изобретение относится к технике автоматического управления и регулирования и может быть использовано в газодобывающей промышленности при добыче и подземном хранении газа.

Изобретение относится к нефтяной и газовой промышленности и предназначено для геофизических исследований действующих скважин. .

Изобретение относится к нефтяной и газовой промышленности, в частности к геофизическим исследованиям скважин, и может быть использовано при определении насыщенных газом интервалов в заколонном пространстве скважин.

Изобретение относится к нефтедобывающей промышленности и предназначено для использования отдельно или в составе комплексных скважинных приборов для геофизических и гидродинамических исследований нефтяных и газовых скважин.

Изобретение относится к нефтедобывающей промышленности, в частности к способам оценки технологических показателей разработки нефтяного месторождения горизонтальными скважинами (ГС).

Изобретение относится к нефтедобыче и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин в системах герметизированного сбора.

Изобретение относится к нефтедобыче и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин в системах герметизированного сбора.

Изобретение относится к промысловой геофизике и направлено на повышение точности определения границ интервала и качества перфорации обсадной колонны скважины. .

Изобретение относится к нефтяной промышленности, в частности к способам исследования нефтяных пластов. .

Изобретение относится к нефтяной промышленности и конкретно может быть использовано для создания оптимального теплового режима в добывающих нефтяных скважинах для предотвращения в них парафиногидратных отложений.

Изобретение относится к области нефтедобывающей промышленности и может использоваться на нефтедобывающих скважинах для возвращения-повышения первоначального дебита с предотвращением образований кольматирующих структурных сеток в ходе эксплуатации, с применением тепловой обработки призабойной зоны пласта (ПЗП).

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для очистки внутренней поверхности насосно-компрессорных труб от асфальтосмоляных, парафиновых и гидратных отложений.

Изобретение относится к нефтегазовой промышленности, а именно к эксплуатации нефтедобывающих скважин, продуктопроводов и газопроводов различного (промыслового и т.п.) назначения.

Изобретение относится к нефтяной и газовой промышленности, в частности к технике интенсификации добычи нефти и газа путем разрушения асфальтосмолистых, гидратно-парафиновых и ледяных отложений (АСГПиЛО) в нефтяных и газовых скважинах.

Изобретение относится к горному делу и может применяться для тепловой обработки продуктивного пласта высоковязкой нефти, восстановления гидравлической связи пласта со скважиной, увеличения нефтеотдачи пластов и дебита скважин, а также возобновления эксплуатации нерентабельных скважин на нефть, природный газ, на пресные, минеральные и термальные воды.

Изобретение относится к нефтяной промышленности и, в частности, может быть использовано для депарафинизации нефтедобывающих скважин, работающих со штанговыми глубинными насосами в различных климатических зонах.

Изобретение относится к нефтяной промышленности и может быть использовано для запуска запарафиненных нефтяных скважин в различных климатических зонах. .
Изобретение относится к нефтедобывающей промышленности, а именно к области эксплуатации скважин, и может быть использовано при капитальном и подземном ремонте для ликвидации асфальто-смоло-парафиновых, гидратных и ледяных пробок в межтрубном и трубном пространстве скважин, оборудованных насосными установками
Наверх