Сверхкороткоимпульсная фазированная антенная решетка

Изобретение относится к активным фазированным антенным решеткам (ФАР) для излучения сверхкоротких импульсов и может быть использовано в системах связи, локации и радиоэлектронной борьбы. Техническим результатом является создание сверхкороткоимпульсной ФАР, предназначенной для излучения сверхкороткого импульса длительностью 1 нс с частотой повторения 10 кГц, обеспечивающей увеличение времени работы ФАР за счет неограниченного времени работы каждого модуля при снижении массогабаритных параметров модуля и ФАР в целом. Сущность изобретения состоит в том, что ФАР содержит N модулей, каждый из которых включает в себя генератор сверхкоротких импульсов и излучатель, соединенные каскадно, генератор в каждом модуле включает в себя каскад формирования импульсов и два каскада последовательного сжатия импульсов, а излучатель выполнен на двух ТЕМ-рупорах, подключенных к коаксиальному соединителю. 3 ил.

 

Изобретение относится к антенной технике, а именно к активным антенным решеткам для излучения сверхкоротких импульсов, и может быть использовано в системах связи, локации и радиоэлектронной борьбы.

Из известных устройств наиболее близким по технической сущности к заявляемому объекту является сверхкороткоимпульсная фазированная антенная решетка (см. J.Oicles, M.Staskus and P.Brunemeier. High - power impulse generators for UWB applications. Presented at the Second International Conference on Ultra - Wideband, Short - Pulse Electromagnetics, April 5-7, 1994), выбранная в качестве прототипа. Известная сверхкороткоимпульсная фазированная антенная решетка (ФАР) излучает сверхкороткий импульс длительностью 1 нс с суммарной импульсной мощностью 1 ГВт, с частотой повторения 10 кГц. Сверхкороткоимпульсная ФАР содержит 144 модуля, каждый из которых включает в себя генератор сверхкоротких импульсов и излучатель Вивальди (finline), соединенные каскадно. Генератор сверхкоротких импульсов выполнен на объемном лавинном полупроводниковом переключателе из арсенида галлия, управляемом светом от лазерного источника излучения. Такой генератор обладает ограниченным количеством переключений луча сверхкороткоимпульсной ФАР (не более 1010 импульсов), что приводит к сокращению времени работы ФАР. Кроме того, ФАР обладает большими массогабаритными параметрами вследствие большой длины излучателя Вивальди. Размеры каждого модуля составляют 130×130×864 мм. Общие размеры сверхкороткоимпульсной ФАР составляют 1600×1600×864 мм. Масса сверхкороткоимпульсной ФАР равна 680 кг.

Задачей, на решение которой направлено изобретение, является создание сверхкороткоимпульсной ФАР, предназначенной для излучения сверхкороткого импульса длительностью 1 нс с частотой повторения 10 КГц, обеспечивающей увеличение времени работы ФАР за счет неограниченного времени работы каждого модуля при снижении массогабаритных параметров модуля и ФАР в целом.

Сущность изобретения заключается в следующем.

Заявляемая сверхкороткоимпульсная ФАР содержит, так же как и прототип, N модулей, каждый из которых включает в себя генератор сверхкоротких импульсов и излучатель, соединенные каскадно. В отличие от прототипа, в каждом модуле генератор сверхкоротких импульсов включает в себя каскад формирования импульсов и два каскада последовательного сжатия импульсов, при этом выход каскада формирования импульсов соединен с входом первого каскада последовательного сжатия импульсов, выход которого подключен к дрейфовому диоду с резким восстановлением через индуктивность и к входу второго каскада последовательного сжатия импульсов, выход которого подключен к диоду с задержанной ионизацией, катод которого соединен с корпусом через конденсатор, а анод - с центральным проводником коаксиального соединителя, при этом излучатель выполнен на двух ТЕМ-рупорах, подключенных к коаксиальному соединителю так, что верхние пластины, образующие ТЕМ-рупоры, подключены к центральному проводнику коаксиального соединителя, а нижние пластины - к корпусу коаксиального соединителя, причем нижняя пластина первого ТЕМ-рупора электрически соединена с верхней пластиной второго ТЕМ-рупора, нижняя пластина которого снабжена электрическим контактом, соединенным с корпусом ФАР, а верхняя пластина первого ТЕМ-рупора - другим электрическим контактом, подключенным к корпусу ФАР, при этом N модулей соединены между собой излучателями с помощью упомянутых электрических контактов, а входы N модулей через первый входной разъем подключены к общему источнику питания и через второй входной разъем - к системе синхронного запуска.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена структурная схема модуля предлагаемой сверхкороткоимпульсной ФАР; на фиг.2 - структурная схема предлагаемой сверхкороткоимпульсной ФАР; на фиг.3 - осциллограммы импульсов в контрольных точках генератора сверхкоротких импульсов

Предлагаемая сверхкороткоимпульсная ФАР (фиг.1) содержит так же, как и прототип, N модулей 1, каждый из которых включает в себя генератор сверхкоротких импульсов 2 и излучатель 3, соединенные каскадно. В отличие от прототипа, в каждом модуле 1 предлагаемой ФАР генератор сверхкоротких импульсов 2 включает в себя каскад формирования импульсов 4 и два каскада последовательного сжатия импульсов 5 и 6. Каскад формирования импульсов 4 выполнен на мощных быстродействующих полупроводниковых ключах, например модуляторных тиристорах. Выход каскада формирования импульсов 4 соединен с входом первого каскада последовательного сжатия импульсов 5, выход которого подключен к дрейфовому диоду с резким восстановлением 7 через индуктивность 8 и к входу второго каскада последовательного сжатия импульсов 6. Термин «дрейфовый диод с резким восстановлением» известен (см. А.Ф.Кардо-Сысоев и др. «Полупроводниковый генератор высоковольтных прямоугольных импульсов с регулируемой длительностью». Приборы и техника эксперимента, 1997, №4, с.47-48).

Выход второго каскада последовательного сжатия импульсов 6 подключен к диоду с задержанной ионизацией 9, катод которого соединен с корпусом через конденсатор 10, а анод - с центральным проводником коаксиального соединителя 11. Термин «диод с задержанной ионизацией» известен (см. А.Ф.Кардо-Сысоев и др. «Волновой ударно-ионизационный пробой дрейфовых диодов с резким восстановлением». Физика и техника полупроводников, 2002, т.35, вып.4).

Излучатель 3 выполнен на двух ТЕМ-рупорах 12 и 13, подключенных к коаксиальному соединителю 11 так, что верхние пластины, образующие ТЕМ-рупоры, подключены к центральному проводнику коаксиального соединителя 11, а нижние пластины - к корпусу коаксиального соединителя 11. При этом нижняя пластина первого ТЕМ-рупора 12 электрически соединена перемычкой 14 с верхней пластиной второго ТЕМ-рупора 13, нижняя пластина которого снабжена жестким электрическим контактом 15, соединенным с корпусом ФАР. Верхняя пластина первого ТЕМ-рупора 12 снабжена пружинным электрическим контактом 16, подключенным к корпусу ФАР. Каскад формирования импульсов 4 имеет входной разъем питания 17 и входной разъем импульса запуска 18.

Модули 1 в сверхкороткоимпульсной ФАР при установке их в решетку (см. фиг.2) соединены между собой излучателями с помощью электрических контактов 15 и 16. При этом входы N модулей 1 через входной разъем 17 подключены к общему источнику питания 19 и через входной разъем 18 - к системе синхронного запуска 20.

Предлагаемая сверхкороткоимпульсная ФАР работает следующим образом.

Генератор сверхкоротких импульсов 2 при подаче на входной разъем 17 напряжения питания и на входной разъем 18 импульса запуска формирует на выходе каскада формирования импульсов 4 импульс длительностью 150 нс (фиг.3), который запускает первый каскад последовательного сжатия импульсов 5, в котором с помощью индуктивности 8 и дрейфового диода с резким восстановлением 7 формируется сжатый до 3 нс импульс (фиг.3). При этом одновременно увеличивается амплитуда импульса. Импульс длительностью 3 нс запускает второй каскад последовательного сжатия импульсов 6, в котором с помощью зарядного конденсатора 10 формируется на диоде с задержанной ионизацией 9 импульс длительностью 0,5...1,0 нс (фиг.3), который поступает на коаксиальный соединитель 11.

С выхода генератора 2 сверхкороткий импульс поступает в ТЕМ-рупоры 12 и 13 излучателя 3. Для снятия накапливающегося от импульса к импульсу постоянного заряда пластины рупоров 12 и 13 электрически замыкаются перемычкой 14, что обеспечивает сток заряда с пластин рупоров. Сверхкороткий импульс, возбуждающий поле ТЕМ-волны в рупорах 12 и 13, излучается в свободное пространство.

Для формирования поля в дальней зоне все излучаемые N модулями поля синхронизируются по импульсам запуска системой синхронного запуска 20.

Во избежание высоковольтного пробоя в раскрыве решетки в момент формирования сверхкороткого импульса в рупорах 12 и 13 модулей 1 пластины рупоров снабжены электрическими контактами 15 и 16, которые соединяют между собой рупоры отдельных модулей и все рупоры N модулей с корпусом ФАР.

Для подвода напряжения питания к каждому из N модулей антенная решетка снабжена общим источником питания 19.

Размеры каждого модуля ФАР составляют 140×110×600 мм (в прототипе размеры каждого модуля составляют 130×130×864 мм).

Экспериментальные исследования непрерывной работы генератора сверхкоротких импульсов в модуле ФАР показали, что параметры выходных импульсов не изменились после наработки 1012 импульсов с частотой следования импульсов 10 кГц, что обеспечивает практически неограниченное время работы модуля.

Таким образом, предлагаемое техническое решение, в отличие от прототипа, обеспечивает увеличение времени работы сверхкороткоимпульсной ФАР за счет неограниченного времени работы каждого модуля ФАР при снижении массогабаритных параметров модуля и ФАР в целом.

Сверхкороткоимпульсная фазированная антенная решетка содержит N модулей, каждый из которых включает в себя генератор сверхкоротких импульсов и излучатель, соединенные каскадно, отличающаяся тем, что в каждом модуле генератор сверхкоротких импульсов включает в себя каскад формирования импульсов и два каскада последовательного сжатия импульсов, при этом выход каскада формирования импульсов соединен с входом первого каскада последовательного сжатия импульсов, выход которого подключен к дрейфовому диоду с резким восстановлением через индуктивность и к входу второго каскада последовательного сжатия импульсов, выход которого подключен к диоду с задержанной ионизацией, катод которого соединен с корпусом через конденсатор, а анод - с центральным проводником коаксиального соединителя, при этом излучатель выполнен на двух ТЕМ-рупорах, подключенных к коаксиальному соединителю так, что верхние пластины, образующие ТЕМ-рупоры, подключены к центральному проводнику коаксиального соединителя, а нижние пластины - к корпусу коаксиального соединителя, причем нижняя пластина первого ТЕМ-рупора электрически соединена с верхней пластиной второго ТЕМ-рупора, нижняя пластина которого снабжена электрическим контактом, соединенным с корпусом ФАР, а верхняя пластина первого ТЕМ-рупора - другим электрическим контактом, подключенным к корпусу ФАР, при этом N модулей соединены между собой излучателями с помощью упомянутых электрических контактов, а входы N модулей через первый входной разъем подключены к общему источнику питания и через второй входной разъем - к системе синхронного запуска.



 

Похожие патенты:

Изобретение относится к средствам связи и может использоваться в радиолокационной технике. .

Изобретение относится к антенной технике. .

Изобретение относится к технике СВЧ-антенн и может быть использовано в радиоэлектронных системах в качестве активной фазированной антенной решетки (АФАР). .

Изобретение относится к проходным фазированным антенным решеткам (ФАР) СВЧ-диапазона с электрическим сканированием луча и может быть использовано при проектировании ФАР, работающих на круговой поляризации поля и у которых размер апертуры в одной плоскости в 2-3 раза меньше размера апертуры в другой плоскости.

Изобретение относится к радиотехнике и может быть использовано для формирования и управления поляризации сигналов. .

Изобретение относится к печатным антеннам с двойной поляризацией с питанием от расположенного на печатной плате коммутационного поля. .

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы.

Изобретение относится к области антенной техники и может быть использовано в качестве следящей многолучевой приемопередающей антенны в радиотехнических системах различного назначения, в частности в спутниковых, радиорелейных и мобильных системах связи.

Изобретение относится к антенной технике и может быть использовано как приемные антенны в радиовещании, радиосвязи и радиопеленгации. .

Изобретение относится к антенной технике

Изобретение относится к антенной технике, в частности к вибраторным фазированным антенным решеткам (ФАР) для летательных аппаратов в печатно-полосковом исполнении, питаемым через полосковый фидерный тракт (ФТ) от волноводной линии питания

Изобретение относится к антенной технике и может быть использовано в системах радио, радиорелейной связи, телевидения и беспроводного Интернета, работающих в диапазоне УКВ

Изобретение относится к радиотехнике и может быть использовано в системах радиопеленгации и радиосвязи

Изобретение относится к способам формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей и может использоваться в радиосвязных и радиолокационных системах ближнего действия

Изобретение относится к антенной технике

Изобретение относится к антенной технике и предназначено для преобразования линейно-поляризованной электромагнитной волны в электромагнитную волну с круговой поляризацией вне зависимости от ориентации плоскости линейной поляризации падающей электромагнитной волны при заданном направлении распространения падающей волны

Антенна // 2316859
Изобретение относится к радиотехнике СВЧ
Наверх