Твердосплавный инструмент

Изобретение относится к порошковой металлургии, в частности к получению твердосплавного инструмента для холодной и горячей механической обработки. Может использоваться для изготовления режущего инструмента, бурового инструмента и фильер. Инструмент выполнен из твердого сплава, состоящего из монокарбида вольфрама, карбида титана и цементирующей кобальтовой связки. Приповерхностный слой толщиной 3÷15 мкм содержит 50-99,5 мас.% (Ti, W)C. Кристаллические решетки карбидных фаз в приповерхностном слое имеют интегральную разупорядоченность (b/a)Σ<2. При этом (b/a)Σ=(b/a)(Ti,W)C·C(Ti,W)C+(b/a)WC·CWC, где (b/a)(Ti,W)C - разупорядоченность кристаллической решетки (Ti, W)C; (b/a)WC - разупорядоченность кристаллической решетки WC; C(Ti,W)C - концентрация (Ti, W)C, мас.%; CWC -концентрация WC, мас.%; b=β21; a=tgϑ2/tgϑ1; β - физическое уширение дифракционной линии; ϑ - угловое положение центра тяжести дифракционной линии; индексы 1 и 2 соответствуют дифракционным линиям, снятым при малых и больших углах дифракции рентгеновских лучей. Полученный инструмент имеет высокий коэффициент стойкости и, следовательно, увеличенный срок службы. 1 ил., 3 табл.

 

Изобретение относится к области машиностроения и может быть использовано для холодной и горячей механической обработки различных материалов, преимущественно металлов и их сплавов, и может быть выполнено в виде различного типа резцов, сверл, фрез, бурового инструмента, фильер и т.п.

Известен инструмент, выполненный из твердого сплава на основе карбида титана с железной связкой (карбидостали) [1]. Недостатком известного инструмента является его сравнительно низкая износостойкость, что можно объяснить высокой степенью разупорядоченности кристаллической решетки карбида титана.

Известен инструмент, выполненный из твердого сплава на основе монокарбида вольфрама с кобальтовой связкой [2]. Недостатками известного инструмента являются его малые твердость и износостойкость, что можно объяснить высокой степенью разупорядоченности кристаллической решетки монокарбида вольфрама.

Наиболее близким к заявляемому инструменту является инструмент, выполненный из твердого сплава, состоящего из монокарбида вольфрама, карбида титана и цементирующей кобальтовой связки и обладающего повышенной концентрацией сложного карбида (Ti, W)C, достигающей 50-99,5 массовых процентов в приповерхностном слое толщиной 3÷15 мкм [3]. Недостатком известного инструмента является сравнительно малый срок службы, что обусловлено высокой степенью интегральной разупорядоченности карбидов вольфрама и титана.

Заявляемое изобретение направлено на увеличение срока службы инструмента.

Указанный результат достигается тем, что инструмент выполнен из твердого сплава, содержащего монокарбид вольфрама, карбид титана и цементирующую кобальтовую связку и обладающего повышенной концентрацией сложного карбида (Ti, W)C, достигающей 50÷99,5 массовых процентов в приповерхностном слое толщиной 3÷15 мкм, при этом интегральная разупорядоченность (b/а)Σ кристаллических решеток карбидных фаз - монокарбида вольфрама WC и сложного карбида (Ti, W)C - меньше двух, где (b/а)Σ=(b/а)(Ti,W)C·С(Ti, W)C+(b/а)WC·СWC, (b/a)(Ti,W)C - разупорядоченность кристаллической решетки сложного карбида (Ti, W)C, (b/а)WC - разупорядоченность кристаллической решетки монокарбида вольфрама WC, С(Ti,W)C - концентрация сложного карбида (Ti, W)C в массовых процентах, СWC - концентрация монокарбида вольфрама WC в массовых процентах, b=β21, а=tgϑ2/tgϑ1, β - физическое уширение дифракционной линии, ϑ - угловое положение центра тяжести дифракционной линии, индексы 1 и 2 отвечают дифракционным линиям, снятым при малых и больших углах дифракции рентгеновских лучей на исследуемом образце.

Отличительным признаком заявляемого изобретения является выполнение кристаллических решеток карбидных фаз - монокарбида вольфрама WC и сложного карбида (Ti, W)C - с интегральной разупорядоченностью (b/а)Σ, меньшей двух, где (b/а)Σ=(b/а)(Ti,W)C ·C(Ti,W)C+(b/a)WC·CWC, (b/а)(Ti,W)C - разупорядоченность кристаллической решетки сложного карбида (Ti, W)C, (b/a)WC - разупорядоченность кристаллической решетки монокарбида вольфрама WC, С(Ti,W)C - концентрация сложного карбида (Ti, W)C в массовых процентах, СWC - концентрация монокарбида вольфрама WC в массовых процентах, b=β21, а=tgϑ2/tgϑ1, β - физическое уширение дифракционной линии, ϑ - угловое положение центра тяжести дифракционной линии, индексы 1 и 2 отвечают дифракционным линиям, снятым при малых и больших углах дифракции рентгеновских лучей на исследуемом образце.

Установлено, что если интегральная разупорядоченность кристаллических решеток карбидных фаз (Ti, W)C и WC больше двух, то увеличение срока службы инструмента практически не заметно. Значение интегральной разупорядоченности, меньшее двух, обеспечивает достижение заявленного результата.

Сущность заявленного изобретения поясняется чертежом и нижеследующим описанием.

На чертеже приведено схематическое изображение инструмента. 1 - инструмент, 2 - приповерхностный слой, обогащенный сложным карбидом (Ti, W)C.

На чертеже схематично представлен поперечный разрез твердосплавного инструмента 1, иллюстрирующий расположение обогащенного сложным карбидом (Ti, W)C слоя 2 на его поверхности. Твердосплавный инструмент закрепляется в основании известным образом, образуя устройство, которое в целом может являться резцом, сверлом, фрезой, фильерой, протяжкой и т.п. В частном случае таким основанием может служить зажимной патрон станка, в котором закрепляется твердосплавный инструмент (резец, сверло, развертка, метчик и т.п.).

Работа инструмента не описывается, так как он не содержит движущихся узлов и деталей.

Обогащенный сложным карбидом (Ti, W)C приповерхностный слой инструмента и интегральная разупорядоченность в нем монокарбида вольфрама WC и сложного карбида (Ti, W)C, меньшая двух, создаются термообработкой. Готовое изделие из твердого сплава, получаемое известными методами порошковой металлургии, подвергают нагреву до температуры, подбираемой экспериментально, превышающей температуру стационарного спекания изделия в присутствии жидкой фазы [4] (высокотемпературная обработка (ВТО)). Время выдержки при подобранных температурах также подбирается экспериментально. Уменьшение интегральной разупорядоченности монокарбида вольфрама и сложного карбида титана и вольфрама до значений, меньших двух, происходит вследствие нагрева твердого сплава до высоких температур. Степень разупорядоченности монокарбида вольфрама и сложного карбида (Ti, W)C регистрируется методом рентгеновской дифрактометрии.

Твердосплавный инструмент с уменьшенным значением интегральной разупорядоченности монокарбида вольфрама и сложного карбида (Ti, W)C закрепляется в основании известными методами и полученное устройство для обработки материалов (инструмент, оснастка) используется по назначению.

Проверка достижения заявленного технического результата осуществлялась следующим образом. После термообработки пластины из твердого сплава Т15К6 (состав в массовых процентах: WC - 79, TiC - 15, Со - 6) исследовались методом рентгеновской дифрактометрии [5]. Для исследования монокарбида вольфрама WC использовались линии 10.1 (ϑ1=24,39°) и 11.2 (ϑ2=49,42°), для исследования двойного карбида (Ti, W)C использовались линии 200 (ϑ1=21,01°) и 400 (ϑ2=45,60°). Применялось излучение CuKα. После рентгеновских исследований пластины из твердого сплава Т15К6 использовались для изготовления резцов для токарной обработки.

Производственные испытания с целью определения срока службы резцов осуществлялись на СП "Пигма-Kennametal". Испытания опытной партии неперетачиваемых режущих пластин KNUX 190810 из твердого сплава Т15К6 производства КЗТС проведены на токарно-винторезном станке с ЧПУ модели 16К20Ф3. Обрабатывались различные детали для горного инструмента, изготовленные из стали 30ХГСА. Режимы резания: скорость резания V=90 м/мин, подача S=0,3 мм/об, глубина резания t=3 мм.

Результаты рентгеновских измерений представлены в таблице 1, а производственных испытаний - в таблице 2. В таблице 3 сопоставлены результаты рентгеновских измерений и производственных испытаний.

Из табл.1 следует, что основной вклад в интегральную разупорядоченность (b/а)Σ вносит разупорядоченность сложного карбида (Ti, W)C как вследствие ее большей величины по сравнению с разупорядоченностью монокарбида вольфрама, так и почти на порядок большей концентрацией (Ti, W)C (84,2÷89,2 мас.% по сравнению с 8,5÷12,4 мас.%).

Из табл.2 вытекает, что время работоспособности термообработанных пластин колеблется в широких пределах, изменяясь от 114 до 858 мин, что меньше и больше времени работоспособности базовой пластины, равного 213 мин.

Наибольший интерес для практических применений представляют данные табл.3, в которой сопоставлены значения интегральной разупорядоченности (b/а)Σ со значениями коэффициента стойкости KСТ ВТО термообработанных пластин, определяемого по формуле

где tР - время работоспособности базовой пластины, tР ВТО - время работоспособности пластины, подвергнутой высокотемпературной обработке (ВТО).

Из табл.3 очевидно, что чем больше (b/а)Σ, тем меньше коэффициент стойкости термообработанных пластин. Данное утверждение целиком выполняется в случае коэффициентов стойкости 1-го лезвия. В случае 2-го лезвия для больших значений (b/а)Σ, близким к двум, это утверждение несправедливо. Однако для коэффициентов стойкости как первого, так и второго лезвий и среднего значения коэффициента стойкости двух лезвий справедливо другое положение, являющееся основным положительным результатом заявляемого изобретения: при значениях (b/а)Σ, больших двух, значения КСТ. меньше двух (КСТ=0,53÷1,62), что либо не имеет особого практического значения (КСТ=1,57÷1,62), либо бессмысленно (КСТ=1,08), либо просто вредно (КСТ=0,53).

Итак, при выполнении условия: (b/а)Σ<2, среднее значение стойкости пластины , т.е. увеличивается более, чем вдвое, время работоспособности термообработанной пластины по сравнению с базовой пластиной.

Таблица 1

Результаты рентгеновских измерений пластин KNUX 190810 из твердого сплава Т15К6 производства КЗТС после высокотемпературной обработки
№ пл-ны(b/a)(Ti,W)CC(Ti,W)C, мас.%(b/а)WCCWC, мас.%(b/а)Σ=(b/a)(Ti,W)C·C(Ti,W)C+(b/a)WC·СWC
11,55086,51,05510,61,457
21,93685,21,26211,01,788
31,99284,21,15212,41,820
42,10785,71,24211,31,946
52,12888,61,3658,62,003
62,20886,51,10910,62,027
71,99885,71,12410,31,828
81,99285,01,15911,71,829
91,91786,31,11710,41,771
102,39986,01,24710,32,192
112,16986,81,1889,61,997
122,09189,21,2778,51,974

Таблица 2

Результаты производственных испытаний пластин KNUX 190810 из твердого сплава Т15К6 производства КЗТС после высокотемпературной обработки
№ пл-ныНаименование обрабатываемой Количество обработанных деталейВремя работоспособности пластины tP, мин
детали1 лезвие2 лезвие1 лезвие2 лезвие
1G60KB90150140858801
2RG52D160160568568
3G50-16S160160522522
4L36G-16S130230364644
5G60KB906020343114
6G50EDC-19,5125125334334
БазоваяRG52D6060213213

Таблица 3

Сопоставление результатов рентгеновских измерений и производственных испытаний пластин KNUX 190810 из твердого сплава Т15К6 производства КЗТС после высокотемпературной обработки
№ пл-ны(b/а)ΣНаименование обрабатываемой деталиКоэффициент стойкости
1-го лезвия КСТ12-го лезвия КСТ2
11,457G60KB904,033,763,90
21,788RG52D2,662,662,66
31,820G50-16S2,452,452,45
41,946L36G-16S1,703,022,36
52,003G60KB901,620,531,08
62,027G50EDC-19,51,571,571,57

Источники информации

1. Гуревич Ю.Г., Нарва В.К., Фраге Н.П. Карбидостали. М.: Металлургия, 1988. 142 с.

2. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. М.: Металлургия, 1976, 528 с. С.21-125.

3. Устройство для обработки твердых материалов. Пат. РФ на изобретение №2178012 от 10.01.2002 г. Патентообладатель - Научно-исследовательский институт механики МГУ им. М.В.Ломоносова. Авторы: Коршунов А,Б., Бажинов А.Н., Рябов В.Н. и др. (Прототип).

4. Способ упрочнения изделий из карбидосодержащих сплавов. Пат. РФ на изобретение №2181643 от 27.04.2002 г. Патентообладатель - Научно-исследовательский институт механики МГУ им. М.В.Ломоносова. Авторы: Коршунов А.Б., Бажинов А.Н., Рябов В.Н. и др.

5. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографичесий и электронно-оптический анализ. Учебное пособие для вузов. Изд. 4-е, перераб. и доп. - М.: МИСиС, 2002. - 360 с.

Инструмент для механической обработки, выполненный из твердого сплава, состоящего из монокарбида вольфрама, карбида титана и цементирующей кобальтовой связки, и имеющий приповерхностный слой, содержащий сложный карбид (Ti, W)C в концентрации 50-99,5 мас.% толщиной 3÷15 мкм, отличающийся тем, что кристаллические решетки карбидных фаз в приповерхностном слое имеют интегральную разупорядоченность (b/а)Σ<2, при этом

(b/a)Σ=(b/a)(Ti,W)C·C(Ti, W)C+(b/a)WC·CWC,

где (b/a)(Ti,W)C - разупорядоченность кристаллической решетки сложного карбида (Ti, W)C;

(b/a)WC - разупорядоченность кристаллической решетки монокарбида вольфрама WC;

C(Ti,W)C - концентрация сложного карбида (Ti, W)C, мас.%;

CWC - концентрация монокарбида вольфрама WC, мас.%;

b=β21;

a=tgϑ2/tgϑ1;

β - физическое уширение дифракционной линии;

ϑ - угловое положение центра тяжести дифракционной линии;

индексы 1 и 2 соответствуют дифракционным линиям, снятым при малых и больших углах дифракции рентгеновских лучей.



 

Похожие патенты:

Изобретение относится к горному делу, а именно к буровой технике, применяемой при проходке геологоразведочных скважин, и также может быть использовано во всех термофрикционных буровых инструментах для бурения нефтяных, взрывных и строительных скважин.

Изобретение относится к горному делу, а именно к буровой технике, применяемой при проходке геолого-разведочных скважин, и также может быть использовано во всех комбинированных способах разрушения горных пород, нагреванием разупрочняющих поверхностный слой породы.

Изобретение относится к породоразрушающему инструменту, а именно к алмазным буровым коронкам для бурения скважин с продувкой воздухом и водовоздушными смесями. .

Изобретение относится к породоразрушающему инструменту, а именно к алмазным буровым коронкам для бурения скважин с продувкой воздухом и водовоздушными смесями. .

Изобретение относится к буровой технике и предназначено для использования в качестве алмазного породоразрушающего инструмента - алмазных буровых коронок и долот для бурения скважин.

Изобретение относится к буровой технике и предназначено для использования в качестве алмазных коронок и долот, армированных синтетическими или природными алмазами, для бурения скважин.

Изобретение относится к горному делу, а именно к бурению скважин с отбором или без отбора керна. .

Изобретение относится к горному делу, а именно к буровой технике, применяемой при проходке геологоразведочных скважин, и также может быть использовано во всех комбинированных способах разрушения горных пород нагреванием, разупрочняющих поверхностный слой породы.

Изобретение относится к породоразрушающему инструменту, а именно к алмазным коронкам с продувкой воздухом и водовоздушными смесями. .

Изобретение относится к режущим элементам или коронкам, предназначенным для крепления на цельных буровых инструментах, используемых при бурении горных пород, например, при бурении на нефть или бурении по цементу.
Изобретение относится к порошковой металлургии, в частности к высокотемпературным композиционным материалам. .
Изобретение относится к порошковой металлургии, в частности к производству градиентных твердосплавных пластин для оснащения металлорежущего инструмента. .
Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористых проницаемых материалов с заданным средним размером пор. .

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе карбида вольфрама для электрических контактов. .

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе карбида вольфрама для электрических контактов. .
Изобретение относится к порошковой металлургии, в частности к составам шихт для получения пористых проницаемых материалов методом самораспространяющегося высокотемпературного синтеза.
Изобретение относится к порошковой металлургии, в частности, к способу закалки твердых сплавов на основе карбида вольфрама для бурового инструмента. .
Изобретение относится к порошковой металлургии, в частности к получению in-situ композита оксид алюминия-(Ti, Zr) бориды. .
Изобретение относится к области порошковой металлургии и упрочнению конструкционных материалов, работающих в условиях интенсивных механических нагрузок (абразивное изнашивание в условиях трения скольжения).

Изобретение относится к порошковой металлургии, в частности, к изготовлению стержней из твердых сплавов с переменным по оси сечением. .

Изобретение относится к созданию самозатачивающихся ножей и других режущих инструментов, имеющих лезвия, снабженные твердым покрытием. .
Наверх