Способ визуального контроля ориентации тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении

Изобретение относится к робототехнике и предназначено для определения плоских декартовых координат и углового положения тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении. Способ визуального контроля ориентации тележки мобильного робота на горизонтальной поверхности с заданной плоской системой координат при помощи видеокамеры, при котором на тележке мобильного робота на одинаковой высоте неподвижно установлены два различных источника излучения, на горизонтальной поверхности задана система реперных точек, видеокамера установлена неподвижно относительно горизонтальной поверхности, для каждой реперной точки на матрице изображения определено усредненное точечное изображение источника излучения, по изображениям текущих положений источников излучения вначале определяют ближайшие к ним изображения реперных точек, не лежащие на одной прямой, по которым затем производят интерполирование положений источников излучения в плоской системе координат, а также определяют угловое положение тележки мобильного робота. Изобретение обеспечивает автоматизированное уточненное определение плоских декартовых координат и углового положения тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении. 3 ил.

 

Изобретение относится к робототехнике и предназначено для определения плоских декартовых координат и углового положения тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении.

Известна система [1], включающая сеть статических многоцелевых датчиков, используемых, в том числе для идентификации местоположения мобильных роботов. Используемая при этом радиосвязь позволяет найти координаты мобильного робота очень приближенно.

Наиболее близким по совокупности признаков является мобильный робот [2], тележка которого, предназначенная для перемещения по горизонтальной поверхности с заданной плоской системой координат, оснащена устройством определения местоположения, соединенным с управляющей частью и содержащим обзорную видеокамеру для создания обзорного изображения потолка помещения и распознавания базового знака на потолке.

Данная система распознавания хорошо работает в тех помещениях, где потолок расположен на небольшой высоте и совершенно не применима в средах, где потолок отсутствует либо на него нельзя наносить технологические изображения.

Задачей изобретения является автоматизированное уточненное определение плоских декартовых координат и углового положения тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении.

Поставленная задача достигается тем, что предложен способ визуального контроля ориентации тележки мобильного робота на горизонтальной поверхности с заданной плоской системой координат при помощи видеокамеры, у которого согласно изобретению на тележке мобильного робота на одинаковой высоте неподвижно установлены два различных источника излучения, на горизонтальной поверхности задана система реперных точек, видеокамера установлена неподвижно относительно горизонтальной поверхности, для каждой реперной точки на матрице изображения определено усредненное точечное изображение источника излучения, по изображениям текущих положений источников излучения вначале определяют ближайшие к ним изображения реперных точек, не лежащие на одной прямой, по которым затем производят интерполирование положений источников излучения в плоской системе координат, а также определяют угловое положение тележки мобильного робота.

На фиг.1 схематически дан общий вид помещения с заданной плоской системой координат Oxy и системой реперных точек . Источники излучения 1 и 2 установлены на тележке мобильного робота 3, на которой на высоте Н на расстоянии ρ друг от друга. Видеокамера 4 неподвижно установлена в заданной точке помещения. Схематически показана матрица изображения 5, получаемого с видеокамеры 4. На матрице изображения 5 показано изображение источника 1 при его позиционировании в реперной точке

На фиг.2 показан треугольник, образуемый точками-изображениями ближайшими к изображению а также локальная система координат (u, ν) и значения параметров (u1, ν1), соответствующие изображению

На фиг.3 дан вид сверху тележки робота.

При перемещении тележки мобильного робота 3 по горизонтальной плоскости требуется определить координаты (x, y), а также угол поворота тележки γ при ее перемещении в пределах заданного помещения по получаемым изображениям источников излучения 1 и 2.

Пространственное распознавание местоположения источников излучения 1 и 2 осложняется тем, что перспективное изображение, получаемое реальной камерой, существенно искажается ее оптической системой, а также за счет погрешностей юстирования, установки и т.д. Неподвижно установленная видеокамера задает некоторое фиксированное отображение множества точек с пространственными декартовыми координатами (х, y, Н) на пиксели матрицы изображения, у которых усредненные координаты изображения обозначим через

Рассмотрим решение для плоской поверхности, позволяющее значительно повысить точность распознавания положения тележки робота за счет использования сети реперных точек

На первом этапе производится перемещение МР таким образом, чтобы плоские координаты одного из источников (1 или 2) совпадали с реперными точкам и после распознавания положения данного источника излучения на прямоугольной матрице определяются образы пространственных точек (хi, yi, Н). Обозначим их через Массивы координат реперных точек и отображений через на матрицу изображений сохраняются в памяти компьютера.

Полученные результаты тарирования видеоизображений источника, получаемых с помощью постоянно установленной камеры, используются для уточненного распознавания положений робота следующим образом. Допустим, усредненное положение текущего изображения датчика (1 или 2) на матрице имеет некоторые координаты Необходимо определить по данным параметрам изображения и тарировочной информации плоские декартовы координаты соответствующего датчика робота.

Если найденные координаты изображения совпали с отображением какой-либо реперной точки, то для плоских декартовых координат искомой точки принимаем: .

Если же найденные координаты изображения существенно отличаются от имеющихся изображений реперных точек, то для определения искомых координат применяем интерполирование по полученным ранее массивам Для этого вначале по заданным параметрам изображения датчика излучения определяем три ближайших к ним изображения реперных точек из массива не лежащие на одной прямой.

Примем линейное интерполирование локальных координат (u, ν), связанных с реперными точками Связь параметров текущего изображения датчика излучения с параметрами ближайших изображений будет следующей:

где um, νm - локальные координаты точки .

Необходимо определить координаты (um, νm) полученного изображения датчика по заданным параметрам датчика излучения . По правилу Крамера решение представим в виде

где

Искомые декартовые координаты (хm, уm) на плоской поверхности, соответствующие текущему изображению (um, νm) получаем при данном способе интерполирования, подставляя найденные значения параметров um и νm в выражение для

где - реперные точки плоскости, соответствующие изображениям

По формулам (3) необходимо рассчитать декартовы координаты (хm1, ym1), (хm2, ym2) обоих источников. Для определения угла поворота тележки γ относительно оси х (фиг.3) используем величины тригонометрических функций γ:

где ρ′ - расстояние между расчетными положениями (хm1, ym1), (хm2, ym2) источников 1 и 2, которое в основном из-за погрешностей измерений будет несколько отличаться от точного значения ρ′.

Предложенный способ определения ориентации тележки мобильного робота позволяет получить хорошую точность за счет выбора системы реперных точек на плоскости. Распознавание изображений источников излучения, формирование необходимых массивов тарировочной информации в памяти компьютера и последующее вычисление плоских координат тележки легко программируется на ЭВМ.

Для получения визульной информации о положении робота могут быть использованы обычные камеры видеонаблюдения.

Пример.

На тележке мобильного робота источники излучения 1 и 2 установлены на одинаковой высоте на расстоянии 0,5 м друг от друга. В помещении неподвижно установлена видеокамера из четырехканального комплекта RC500A. Для приема визуальной информации использован ТВ - тюнер PCI FlyTV Prime. При проведении эксперимента использованы 256-цветные черно-белые изображения. Для массива координат реперных точек получены их усредненные изображения

Для источника 1 получено изображение с усредненными координатами для источника 2 - изображение с усредненными координатами .

Ближайшими к изображениям и являются не лежащие на одной прямой изображения реперных точек

Необходимо определить декартовы координаты (хm1, ym1), (хm2, ym2) источников излучения 1 и 2, а также угол γ, образуемый осью тележки с декартовой осью х.

Решение. Для расчетов по формулам (2) находим значения определителей:

Значения параметров для усредненных изображений источников излучения 1 и 2:

Декартовы координаты (хm, ym) источников излучения, соответствующие параметрам (um, νm), получаем при данном способе интерполирования, подставляя найденные значения в выражение для

Определим расчетную величину ρ′:

Угол, образуемый осью тележки с декартовой осью х:

Опытные испытания показывают, что ошибки при определении местоположения робота не превышают 10-15 см, угловые ошибки - до 5-10°. Таким образом предлагаемый способ обеспечивает довольно высокую точность при автоматизированном определении плоских декартовых координат и углового положения тележки мобильного робота при его перемещении по горизонтальной поверхности в заданном помещении.

Способ визуального контроля ориентации тележки мобильного робота на горизонтальной поверхности с заданной плоской системой координат при помощи видеокамеры, отличающийся тем, что на тележке мобильного робота на одинаковой высоте неподвижно установлены два различных источника излучения, на горизонтальной поверхности задана система реперных точек, видеокамера установлена неподвижно относительно горизонтальной поверхности, для каждой реперной точки на матрице изображения определено усредненное точечное изображение источника излучения, по изображениям текущих положений источников излучения вначале определяют ближайшие к ним изображения реперных точек, не лежащие на одной прямой, по которым затем производят интерполирование положений источников излучения в плоской системе координат, а также определяют угловое положение тележки мобильного робота.



 

Похожие патенты:

Изобретение относится к робототехнике и предназначено для определения пространственного положения по всем трем декартовым координатам и угловой ориентации по всем трем возможным направлениям вращения вокруг осей тележки мобильного робота при ее перемещении по поверхностям, близким к горизонтальным, например по напольным покрытиям производственных помещений.

Изобретение относится к области измерительной техники и может быть использовано для создания средств измерения координат, скорости и угловых величин объекта в автоматических системах управления.

Изобретение относится к измерительной технике и может быть использовано для создания средств измерения координат, скорости и угловых величин объекта в автоматических системах управления.

Изобретение относится к функциональным элементам систем автоматического управления /САУ/. .

Изобретение относится к навигационным измерениям и может быть использовано для определения текущих прямоугольных координат по информации о пройденном пути и угла между продольной осью наземного колесного объекта и проекцией на горизонтальную плоскость поворотного колеса.

Изобретение относится к сварочному производству, в частности к видеосенсорному устройству, которое может быть использовано при электродуговой сварке шва с произвольной конфигурацией промышленными роботами.

Изобретение относится к робототехнике и может быть использовано для автоматизации контроля рельефа деталей на конвейере Целью изобретения является повышение точности видеоинформации о рельефе деталей Устройство содержит конвейер 1, привод 2 конвейера, элемент синхрон и зации 3, объектив 4, линейку фотоприемников 5, блок усиления видеосигнала 6 блок развертки 7, выходное устройство 8, лазеры 9 и 10, светоделители излучения 11 и 12, Объектив 4, линейка 5, блоки 6, 7 и устройство 8 входят в состав видеоконтрольного блока 13.

Изобретение относится к области робототехники. .

Изобретение относится к робототехнике. .

Изобретение относится к робототехнике и может быть использовано, например, в автоматизированном вакуумном оборудовании по производству изделий микроэлектроники. .

Изобретение относится к электродуговой сварке и может быть использовано в различных отраслях промышленности преимущественно для сварки стыковых соединений металлических листов больших толщин плавящимся электродом в среде защитных газов в горизонтальном и вертикальном пространственных положениях

Изобретение относится к системе управления и позиционирования монтажного положения сменного элемента футеровки и к применению камеры системы для определения взаимного расположения сменного элемента футеровки и определенного монтажного положения элемента футеровки. Изобретение может быть использовано при замене элементов футеровки. Система содержит первую опорную систему, сформированную посредством монтажных отверстий стенки, вторую опорную систему, сформированную посредством средств соединения, расположенных на нижней поверхности элемента футеровки, двумерный датчик, выполненный с возможностью стационарного размещения на стороне стенки монтажной поверхности, противоположной подверженной износу стенке, таким способом, чтобы в поле обзора датчика входила нижняя поверхность элемента футеровки, просматриваемая через монтажные отверстия. При этом датчик выполнен с возможностью передачи электрического сигнала, представляющего изображение взаимного расположения двух опорных систем, для определения оператором крана монтажного положения элемента футеровки. Двумерный датчик может содержать две камеры для записи изображений. Применяемая в системе камера выполнена с возможностью записи изображения нижней поверхности элемента футеровки через монтажное отверстие в стенке. Система управления и позиционирования положения сменного элемента футеровки значительно повышает точность монтажных работ и одновременно облегчает их проведение. 2 н. и 9 з.п. ф-лы, 9 ил.

Изобретение относится к области упаковки твердых радиоактивных отходов (ТРО) с использованием комплекса для упаковки в контейнер брикетов, полученных прессованием бочек с ТРО. Способ включает размещение брикетов на столе-накопителе с помощью манипулятора с системой программного управления, после чего запоминают габариты и положение в пространстве и на столе-накопителе каждого из брикетов, сканируют размеры полости контейнера, определяют из размещенных на столе-накопителе подходящие по размеру брикеты для плотной укладки в контейнер и укладывают брикеты в контейнер в определенном порядке с помощью манипулятора. При этом используют систему технического зрения, связанную с системой программного управления манипулятора и содержащей телекамеру. Перед укладкой брикетов в контейнер дополнительно определяют наклон основания каждого брикета и при укладке брикетов в контейнер обеспечивают ориентирование наклона брикетов в сторону стенки контейнера или предыдущего ряда с опиранием на них. Использование изобретения позволяет повысить скорость укладки и точность позиционирования укладываемых брикетов, что обеспечивает повышение производительности, надежности процесса укладки и плотности укладки спрессованных брикетов ТРО в контейнер. 3 з.п. ф-лы, 1 ил.

Изобретение относится к навигации с помощью наземных средств

Изобретение относится к устройствам отображения карты
Наверх