Проволока конденсаторного сорта с более высокими прочностью на разрыв и твердостью

Изобретение относится к области электротехники, в частности к проволоке конденсаторного сорта, полученной порошковой металлургией, содержащаей, по меньшей мере, ниобий и кремний, в которой ниобий является металлом, присутствующим в ниобиевой проволоке в наибольшем весовом процентном количестве. Проволока с контролируемой прочностью на разрыв при диаметре финишной обработки превосходит по прочности проволоку конденсаторного сорта, полученную литейной металлургией, что является техническим результатом изобретения. Также проволока, полученная порошковой металлургией, превосходит по твердости проволоку конденсаторного сорта, полученную литейной металлургией, и имеет утечку заряда, удовлетворяющую требованиям, обычно предъявляемым к проводниковым проволокам конденсаторного сорта из тантала, ниобия или ниобий-циркониевого сплава при температуре спекания приблизительно 1150°С и выше. 2 н. и 16 з.п. ф-лы, 9 ил., 4 табл.

 

Предшествующий уровень техники

Изобретение в основном относится к конденсаторным проводниковым проволокам, в частности к проводниковым проволокам из ниобия, пригодным для использования с анодными прессовками из тантала или ниобия. Изобретение включает порошковую металлургию ниобия, производящую проводниковую проволоку из ниобия с добавкой кремния, обладающую более высокой прочностью и твердостью без существенного изменения номинальной величины утечки заряда проволоки.

Известно применение проводниковой проволоки из ниобия и его сплавов, изготовленных из расплавленных исходных материалов, в качестве конденсаторной проводниковой проволоки. Проволока из чистого ниобия, полученного в процессе плавки, имеет низкую утечку заряда при температуре спекания 1150°С и выше. Однако она имеет ограниченные прочность на разрыв и твердость, что создает трудности при ее использовании; это приводит к низкой производительности при соединении проволоки с конденсаторными анодными прессовками и/или в ходе спекания прессовки или пиролиза твердых электролитов с проводниковыми проволоками. Ниобиевые сплавы, такие как ниобий-циркониевые, имеют оптимальную прочность на разрыв и допустимую утечку заряда при температуре выше 1150°С, чем проволока из чистого ниобия, полученная в процессе плавки. Однако при температуре выше 1050°С из ниобий-циркониевой проволоки диффундирует цирконий и загрязняет анод, что делает ее неприемлемой в качестве конденсаторной проводниковой проволоки.

Объектом настоящего изобретения является улучшение химических, механических, металлургических и функциональных показателей проводниковой проволоки конденсаторного сорта.

Другим объектом настоящего изобретения является уменьшение проблем спекания и соединения.

Еще одним объектом настоящего изобретения является улучшение характеристик ниобиевой проволоки для преодоления вышеописанных недостатков без существенного влияния на электрические свойства проволоки и комбинации проволока-анод.

Сущность изобретения

Изобретение относится к способу изготовления проводниковой проволоки конденсаторного сорта из ниобия с добавкой кремния, включающему: (а) формирование порошка ниобия с низким содержанием кислорода гидрированием слитка ниобия или ниобиевой заготовки и измельчение или дробление слитка или заготовки с получением порошка с размерами частиц, определенных по методу среднего диаметра частиц по Фишеру, в пределах менее чем приблизительно 150 микрон; (б) дегидрирование порошка и при необходимости восстановление порошка с получением порошка ниобия с низким содержанием кислорода; (в) смешивание порошка ниобия с низким содержанием кислорода с добавкой - порошком кремния и уплотнение порошка изостатической холодной штамповкой в заготовку; (г) термомеханическую обработку заготовки в стержень; и (д) преобразование стержня комбинацией стадий прокатки и холодного волочения с формованием кремнийсодержащей проволоки. Изобретение также относится к методу проведения такого способа.

Настоящее изобретение включает проволоку из ниобия, полученного порошковой металлургией (П/М), содержащую добавку кремния в количестве менее чем приблизительно 600 чнм. В основном, количество кремния находится в пределах от приблизительно 150 до приблизительно 600 чнм. Предпочтительно, количество кремния находится в пределах от приблизительно 150 до 300 чнм. Изобретение придает регулируемую более высокую механическую прочность на разрыв проволоке из ниобия с диаметром финишной обработки, что превосходит проволоку конденсаторного сорта, сформованную из ниобия и ниобий-циркониевых сплавов, полученных непосредственно из металлургических слитков (литейная металлургия Л/М). Также предпочтительно, П/М исходный материал ниобия имеет содержание кислорода ниже 400 чнм, даже когда кремний добавлен в форме окиси. Кроме того, ниобий и ниобий-кремниевая проволока, полученные П/М, имеют твердость, превосходящую твердость проволок конденсаторного сорта из ниобия и ниобий-циркониевых сплавов, полученных Л/М, и утечку заряда в пределах рабочих технических характеристик при температуре спекания приблизительно 1150°С и выше или приблизительно 1250°С и выше. П/М исходный материал, спеченный при температуре ниже приблизительно 1150°С или 1250°С и выше и/или соединенный с анодной прессовкой, агломерированной при температуре ниже приблизительно 1150°С или ниже 1250°С, будет иметь более высокую утечку. Но при температуре приблизительно 1150°С или 1250°С и выше различия становятся минимальными.

Совершенно очевидно, что и предшествующее общее описание, и последующее детальное описание приведены в качестве примера и для объяснения принципов настоящего изобретения.

Краткое описание чертежей

Фиг.1 - диаграмма зависимости прочности на разрыв от диаметра проволоки из ниобия и его сплава, согласно настоящему изобретению полученных порошковой металлургией, в сравнении с проволокой из ниобия и его сплава, полученных литейной металлургией;

Фиг.2 - диаграмма зависимости электрической утечки постоянного тока от температуры спекания проволоки из ниобия и его сплава, согласно настоящему изобретению полученных порошковой металлургией, в сравнении с проволокой из ниобия и его сплава, полученных литейной металлургией;

Фиг.3A-3F - вид сбоку и спереди примеров конденсаторных проводниковых проволок, соединенных к анодным прессовкам; и

Фиг.4 - диаграмма зависимости электрической утечки постоянного тока от температуры спекания проволоки из ниобия и его сплава, согласно настоящему изобретению полученных порошковой металлургией, в сравнении с проволокой из ниобия и его сплава, полученных литейной металлургией.

Подробное описание предпочтительных вариантов изобретения

Одним из предпочтительных вариантов изобретения является проводниковая проволока из ниобия с добавкой кремния, изготовленная следующим образом. Порошки ниобия формируют гидрированием слитка или заготовки ниобия и измельчением или дроблением слитка или заготовки с получением порошка с размерами частиц в пределах менее чем 150 микрон (средний диаметр частиц по Фишеру), дегидрированием и восстановлением. Процесс гидрирования-измельчения, описанный в US 3295951 Финчама и др., и восстановления (в комбинации с дегидрирующим восстановлением), описанный в US 6261337 Кумара, включены здесь в качестве ссылок полностью, оба указанных патента имеют общее с этим описанием назначение, и г-н Кумар является соавтором настоящего изобретения. Порошок ниобия предпочтительно имеет уровень кислорода ниже 400 чнм, еще более предпочтительно ниже 200 чнм. Добавку - порошок кремния смешивают с порошком ниобия с низким содержанием кислорода, уплотняют изостатической холодной штамповкой (до 60 тыс.фунтов/дюйм2) вначале в брусок для экструзии или уплотнения заготовки предпочтительно с формованием заготовки диаметром приблизительно 1,3 дюйма. Заготовку термомеханической обработкой преобразуют в стержень. Стержень затем прокатывают (или штампуют в горячем виде) и подвергают холодному волочению, обычно с технологическим режимом обжатия и промежуточного отжига, как указано ниже:

отжиг при 2500°F в течение 1,5 часа;

прокатка до 0,440 дюйма по диаметру;

отжиг при 2500°F в течение 1,5 часа;

обжатие до 0,103 дюйма по диаметру;

волочение до 0,0346 дюйма по диаметру проволоки;

вытягивание до финишного диаметра.

В общем, стержень может быть прокатан (или штампован в горячем виде) и подвергнут холодному волочению, как правило, с технологическим режимом обжатия и промежуточного отжига, как указано ниже:

отжиг при температуре в пределах от приблизительно 2100°F до приблизительно 2700°F в течение от приблизительно 0,5 часа до приблизительно 2,0 часов;

прокатка до диаметра в пределах от приблизительно 1 дюйма до приблизительно 0,25 дюйма;

отжиг при температуре в пределах от приблизительно 2100 до приблизительно 2700°F в течение от приблизительно 0,5 часа до приблизительно 2,0 часов;

обжатие до диаметра в пределах от приблизительно 1 дюйма до приблизительно 0,075 дюйма;

волочение до финишного диаметра.

Диаметр проволоки, изготовленной в соответствии с изобретением, может находиться в пределах от приблизительно от 0,005 дюйма до приблизительно 0,1 дюйма. Проволока, согласно настоящему изобретению, может содержать другие дополнительные компоненты, такие как другие металлы, или компоненты, обычно добавляемые к металлическому ниобию, такие как тантал, цирконий, титан или их смеси. Типы и количества этих дополнительных компонентов могут быть теми же самыми, что и те, которые используются со стандартным ниобием и хорошо известны из уровня техники. Ниже в Таблице 1 перечислены химические составы испытываемых образцов, использованных в экспериментах 1-5, проволоки из ниобия с добавкой кремния, полученной порошковой металлургией, обжатой до диаметра 0,5 дюйма и 0,103 дюйма, которые используются со стандартным ниобием и хорошо известны из уровня техники. Ниже в Таблице 1 перечислены химические составы испытываемых образцов, использованных в экспериментах 1-5, проволоки из ниобия с добавкой кремния, полученной порошковой металлургией, обжатой до диаметра 0,5 дюйма и 0,103 дюйма.

Таблица 1
РРМсONMgAlSlTlCrFeNiCuZrМоТаW
Эксперимент 11/2"88646471142025201086551571010201388200
Эксперимент 21/2"90301421062015820995741331610208374200
Эксперимент 31/2"54322601200,5136,1452254445130005
Эксперимент 41/2"142358601201,11615,350255533,551100007,1
Эксперимент 51/2"5832972952,73065,54523053751200007,5
Эксперимент 1.103"631733111022321405001304511100055
Эксперимент 2.103"7118028105316321506751506,45111000085
Эксперимент 3.103"5726249855,2127,565100551,95150006,8
Эксперимент 4.103"79291521004,11626,163130652,251100005,7
Эксперимент 5.103"6128259802,82944,96370551,951100006,5

Проволоку изготавливают из кремниевых стандартных смесей, представленных в экспериментах 1-5 Таблицы 1, и берут образцы, изготовленные в соответствии с различными по продолжительности этапами, и испытывают на прочность на разрыв и твердость (твердость по шкале В Роквелла (ТВР)). В тех же самых условиях испытывают ниобий-циркониевую проволоку (прототип), полученную литейной металлургией.

Таблица 2
ПрототипNb п/мNb п/мNb п/мNb п/мNbn/м
NbZr слитокЭксп.1 (25 млн-1)Эксп.2 (150 млн-1)Эксп.3 (10 млн1)Эксп.4 (150 млн-1)Эксп.5 (300 млн-1)
РазмерТвердостьПрочностьТвердостьПрочностьТвердостьПрочностьТвердостьПрочностьТвердостьПрочностьТвердостьПрочность
дюймТВРтыс.фунт/кв.дюймТВРтыс.фунт/кв.дюймТВРтыс.фунт/кв.дюймТВРтыс.фунт/кв.дюймТВРтыс.фунт/кв.дюймТВРтыс.фунт/кв.дюйм
0,683,77374,375,776,580,2
0,4282,474,973,236,739,743,1
0,26689,874,47174376,979,1
0,16689,174,576,679,98181,1
0,10787,772818282,584,7
0,10379,285,686,184,486,487,5
0,093368,54180,85376,955,6
0,084572,34778,757,179,55832
0,076571,647,281,459,7282,762,5
0,69372,752,883,462,1282,464,86
0,062775,45582,468,383,769,9
0,056875,455,98572,3184,375,1
0,051476,962,583,775,685,477,789119,8891,5122,2898125,94
0,046577,264,48476,186,378,787124,6590,5130,1796,8132,48
0,042278366,785,481,2884,782,792,5126,0591,7133,4997,4132,83
0,03827965,586,583,585,884,2883131,2393,2138,4397,6137,2
0,034485703188,58985,687,790130,5792,5143,7697,5139,88
0,0287883,771,2286,593,887,194,693133,7494,2142,5799,614134
0,0263484,772,2188,595,288,596,396,7150,299,7154,899,7174,64
0,024318572,938910189,599,796,4168,6398180,6198,1182,2
0,022387374,638999389,9103399,3178,1499,4180,661003182,4
0,0206287,675,8890,5103,491,4106,898,8188,97100,2206,8699,7192,47
0,0199587,883,5690,7112,3290,7114,9899,7164,45100,2172,85102158,6
0,017385823090,1116,890,5117,66100,5168,54101,5179,12101,6166,84
0,0153786,8733691119,5691,212199,7172,73103,6182,28102,2172,94
0,0133487,8733690,6126,9591128,43100176,76104,6187,1102,2179,5

Как может быть замечено из результатов, приведенных в Таблице 2 и на фиг.1, ниобий-кремниевая проволока имеет намного более высокие прочность на разрыв и твердость, чем ниобий-циркониевая проволока, при диаметре приблизительно 0,050 дюйма и меньше.

Также проведены испытания на утечку заряда (40 вольт при 90%) проволоки (комбинаций проволока-анод в условиях испытаний конденсаторов) или анодов с выбранными стандартными смесями кремния (Эксперименты 1 и 2), результаты которых представлены на фиг.2. Проведены испытания комбинаций анода с проводниковыми проволоками, изготовленными при различных температурах спекания. Как может быть замечено из результатов, представленных в Таблице 3 и на фиг.2, ниобий-кремниевая проволока пригодна для использования при температурах спекания 1250°С и выше, но незначительно уступает проволоке конденсаторного сорта из тантала с рабочим показателем утечки заряда, равным 0,6 мкА/дюйм2 при 1250°С.

Таблица 3
(@1250°С) утечка заряда, мкА/дюйм2
слиток ниобия0,1
ниобий-цирконий0,25
Эксперимент 10,35
Эксперимент 20,6
данные для тантала0,6

На фиг.3A-3F показаны вид сбоку и спереди примеров ниобий-кремниевых конденсаторных проводниковых проволок, согласно настоящему изобретению, соединенных к анодным прессовкам. Фиг.3А и 3В иллюстрируют ниобий-кремниевую конденсаторную проводниковую проволоку 10, приваренную встык к анодной прессовке 12. Фиг.3С и 3D иллюстрируют ниобий-кремниевую конденсаторную проводниковую проволоку 10, заделанную на длину 14 внутрь прессовки 12. Фиг.3Е и 3F иллюстрируют еще один способ соединения сваркой проводниковой проволоки 10 к верхней части 16 прессовки 12. Проводниковая проволока 10 на любой из фиг.3A-3F и/или прессовка 12 на любой из этих фигур могут быть круглыми, или плоскими (в форме ленты), или других форм.

Кроме того, проведены испытания на утечку заряда (40 вольт при 90%) проволоки (комбинаций проволока-анод в условиях испытаний конденсаторов) или анодов с выбранными стандартными смесями кремния (Эксперименты 3, 4 и 5), результаты которых представлены на фиг.4. Испытания проводились для комбинаций анода с проводниковыми проволоками, изготовленными при различных температурах спекания. Как может быть замечено из результатов, представленных в Таблице 4 и на фиг.4, ниобий-кремниевая проволока пригодна для использования при температуре спекания 1150°С и выше, но незначительно уступает танталовой проволоке конденсаторного сорта с рабочим показателем утечки заряда, равным 0,6 мкА/дюйм2 при 1150°С.

Таблица 4
(@1150°С) утечка заряда, мкА/дюйм2
слиток ниобия0,1
ниобий-цирконий0,25
Эксперимент 30,09
Эксперимент 40,118
Эксперимент 50,103
данные для тантала0,6

Объекты электролитической пропитки и пиролитическое катодное соединение и упаковка хорошо известны специалистам в данной области техники и опущены на фигурах для удобства иллюстрации.

Другие варианты выполнения настоящего изобретения будут очевидны для специалистов из рассмотрения технических условий и применения изобретения, раскрытого здесь. Также очевидно, что характеристики и примеры приведены только в качестве иллюстраций.

1. Способ изготовления проводниковой проволоки из ниобия с добавкой кремния, включающий

(а) формирование порошка ниобия с низким содержанием кислорода гидрированием слитка ниобия или ниобиевой заготовки и измельчение или дробление слитка или заготовки с получением порошка с размерами частиц, определенных по методу среднего диаметра частиц по Фишеру, в пределах менее чем приблизительно 150 мкм,

(б) дегидрирование порошка и при необходимости восстановление порошка с получением порошка ниобия с низким содержанием кислорода,

(в) смешивание порошка ниобия с низким содержанием кислорода с добавкой - порошком кремния и уплотнение порошка изостатической холодной штамповкой в заготовку,

(г) термомеханическую обработку заготовки в стержень, и

(д) преобразование стержня комбинацией стадий прокатки и холодного волочения с формованием кремнийсодержащей проволоки конденсаторного сорта.

2. Способ по п.1, в котором кремний добавляют в количестве менее чем приблизительно 600 млн-1.

3. Способ по п.1, в котором кремний добавляют в количестве в пределах от приблизительно 150 до приблизительно 300 млн-1.

4. Способ по п.1, в котором стержень подвергают обработке по технологическому режиму обжима и промежуточного отжига, включающему отжиг, прокатку, отжиг, обжим и волочение.

5. Способ по п.1, в котором стержень подвергают обработке согласно комбинации стадий, включающей (i) стадию первого отжига, (ii) стадию прокатки, (iii) стадию второго отжига, (iv) стадию обжима и (v) стадию волочения.

6. Способ по п.5, в котором технологический режим обжима и промежуточного отжига, включает комбинацию стадий, состоящую из отжига при температуре приблизительно 2500°F в течение 1,5 ч, прокатки до диаметра приблизительно 0,440 дюйма, отжига при температуре приблизительно 2500°F в течение 1,5 ч, обжатия до диаметра приблизительно 0,1 дюйма, волочения проволоки до диаметра, по меньшей мере, приблизительно 0,005 дюйма.

7. Способ по п.1, в котором проволока далее содержит металлический компонент, выбранный от группы, состоящей из тантала, циркония, титана и их смесей.

8. Способ по п.1, в котором порошок ниобия имеет уровень кислорода ниже приблизительно 400 млн-1.

9. Способ по п.1, в котором проволока имеет прочность на разрыв, превышающую прочность проволоки конденсаторного сорта из ниобия и ниобий-циркониевых сплавов, полученных непосредственно литейной металлургией.

10. Проволока конденсаторного сорта, имеющая прочность на разрыв, превышающую прочность проволоки конденсаторного сорта из ниобия и ниобий-циркониевых сплавов, полученных непосредственно литейной металлургией, причем проволока изготовлена способом, включающим

(а) формирование порошка ниобия с низким содержанием кислорода гидрированием слитка ниобия или ниобиевой заготовки и измельчение или дробление слитка или заготовки с получением порошка с размерами частиц, определенных по методу среднего диаметра частиц по Фишеру, в пределах менее чем приблизительно 150 мкм,

(б) дегидрирование порошка и при необходимости восстановление порошка с получением порошка ниобия с низким содержанием кислорода,

(в) смешивание порошка ниобия с низким содержанием кислорода с добавкой - порошком кремния и уплотнение порошка изостатической холодной штамповкой в заготовку,

(г) термомеханическую обработку заготовки в стержень, и

(д) преобразование стержня комбинацией стадий прокатки и холодного волочения с формованием кремнийсодержащей проволоки.

11. Проволока по п.10, в которой кремний добавлен в количестве менее чем приблизительно 600 млн-1.

12. Проволока по п.10, в которой кремний добавлен в количестве в пределах от приблизительно 150 до приблизительно 300 млн-1.

13. Проволока по п.10, в которой стержень подвергнут обработке согласно технологическому режиму обжатия и промежуточного отжига, включающему отжиг, прокатку, отжиг, обжатие и волочение.

14. Проволока по п.10, в которой стержень подвергнут обработке согласно комбинации стадий, включающей (i) стадию первого отжига, (ii) стадию прокатки, (iii) стадию второго отжига, (iv) стадию обжатия и (v) стадию волочения.

15. Проволока по п.14, в которой технологический режим обжатия и промежуточного отжига, включает комбинацию стадий, состоящую из: (i) отжига при температуре приблизительно 2500°F в течение 1,5 ч, прокатки до диаметра приблизительно 0,440 дюйма, отжига при температуре приблизительно 2500°F в течение 1,5 ч, обжатия до диаметра приблизительно 0,1 дюйма, волочения проволоки до диаметра, по меньшей мере, приблизительно 0,005 дюйма.

16. Проволока по п.10, в которой она далее содержит металлический компонент, выбранный от группы, состоящей из тантала, циркония, титана и их смесей.

17. Проволока по п.10, в которой порошок ниобия имеет уровень кислорода ниже приблизительно 400 млн-1.

18. Проволока по п.10, в которой она имеет прочность на разрыв, превышающую прочность проволоки конденсаторного сорта из ниобия и ниобий-циркониевых сплавов, полученных непосредственно литейной металлургией.



 

Похожие патенты:

Изобретение относится к аноду с запирающим слоем на основе ниобия, состоящему из ниобиевой металлической сердцевины, проводящего слоя из субоксида ниобия и диэлектрического запирающего слоя из пятиоксида ниобия.

Изобретение относится к области электрохимии, а именно к способам восстановления оксида ниобия, включающим тепловую обработку исходного оксида ниобия в присутствии материала-газопоглотителя в атмосфере, обеспечивающей возможность переноса атомов кислорода из исходного оксида ниобия к материалу-газопоглотителю, в течение достаточного времени и при достаточной температуре для того, чтобы исходный оксид ниобия и указанный материал-газопоглотитель образовали оксид ниобия с пониженным содержанием кислорода.

Изобретение относится к области электротехники, в частности к изготовлению конденсаторов в портативных устройствах. .

Изобретение относится к ниобиевому порошку для изготовления конденсаторов с большой удельной емкостью. .

Изобретение относится к области электротехники, в частности к порошку для конденсатора, состоящего в основном из ниобия с поверхностным покрытием, которое содержит, как минимум, один элемент из группы Al, Si, Ti, Zr, Y и Та, и к аноду конденсатора, состоящего из спекшего порошка с изолирующим слоем, полученным путем анодного окисления, где слой содержит, как минимум, один из элементов из группы Al, Si, Ti, Zr, Y и Та.

Изобретение относится к новым материалам для конденсаторов, способу их получения и конденсаторам, использующим эти материалы. .
Изобретение относится к области разработки электролитических конденсаторов на основе двойного электрического слоя, которые могут быть при определенных условиях использованы в современной энергетике, автомобилестроении и т.д.

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления.

Изобретение относится к порошковой металлургии, к порошку тантала, пригодному для изготовления конденсатора

Изобретение относится к пористому коксу, который может быть использован как электродный материал для электрохимических конденсаторов

Изобретение относится к области электротехники и может быть использовано в приборах мобильной связи в качестве источника постоянного тока многократного использования. Предложенный суперконденсатор выполнен в виде тонкопленочной структуры, содержащей электроды, разделенные пленочным слоем твердого электролита, при этом, в качестве твердого электролита выбран диоксид циркония, стабилизированного иттрием, один из электродов представляет собой наночастицы графена, а второй проводящий полимер - полипиррол. Повышение удельной энергии конденсатора является техническим результатом изобретения. 1 ил.

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной обкладки перед нанесением покрытия, заключающуюся в пескоструйной обработке как плоской пластины, так и внутренней поверхности корпуса конденсатора или получении на внутренней поверхности корпуса конденсатора подслоя танталового порошка путем нанесения спиртовой суспензии танталового порошка с последующим спеканием в вакууме, травление в растворе азотной кислоты с последующей промывкой дистиллированной водой и нанесение на подготовленную поверхность рутениевого покрытия. При этом пескоструйную обработку проводят с помощью порошка оксида алюминия или карбида кремния с крупностью частиц от 20 до 100 мкм при давлении воздуха 1,5-3,0 ат. Травление в растворе азотной кислоты производят в присутствии плавиковой кислоты или фторида аммония в количестве 10-20 мас.% при температуре 25-30°C в течение 20-60 с. Нанесение рутениевого покрытия с толщиной 0,5-5,0 мкм проводят из электролита, содержащего 2-20 г/л рутения в виде аммонийных солей биядерного нитридоаквахлоридного комплекса, например, с формулой (NH4)3[Ru2(µ-N)(H2O)2Cl8], 5-20 г/л серной кислоты, 10-20 г/л сульфамата аммония, в условиях перемешивания электролита при катодной плотности тока 1,0-10,0 А/дм2, температуре 40-60°C. Затем полученное металлическое рутениевое покрытие подвергают электрохимическому анодному оксидированию в растворе 35-40%-ной серной, фосфорной, азотной или щавелевой кислоты с выдержкой под анодным потенциалом при напряжении 10-100 В и силе тока 100-500 мА в течение 5-20 мин. Технический результат заключается в увеличении удельной емкости танталовых объемно-пористых электролитических конденсаторов и достижении устойчивой работы при эксплуатации в широком диапазоне температур. 2 з.п. ф-лы, 2 ил., 8 табл.

Изобретение может быть использовано в электрохимической области. Способ получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена включает осаждение электрокаталитического оксидного покрытия на модифицированной поверхности стеклоуглерода, при этом электрокаталитическое оксидное покрытие формируют на основе смешанных оксидов ванадия, кобальта и молибдена путем их осаждения из водного раствора электролита температурой 60÷65°C, при pH 4÷4,5, содержащего соли кобальта, молибдена, никеля, железа, лимонную и борную кислоты, под действием переменного асимметричного тока, в котором соотношение средних токов за период катодного и анодного составляет 1,5:1 при напряжении 40÷50 B и следующем соотношении компонентов, г·л-1: сульфат кобальта (CoSO4·7H2O) - 100,0÷110,0, гептамолибдат аммония ((NH4)6Mo7O24·4H2O) - 40,0÷56,0, сульфат железа (FeSO4·7H2O) - 6,0÷14,0, сульфат никеля (NiSO4·7H2O) - 18,0÷20,0, лимонная кислота (HOC(СН2СООН)2СООН) - 2,5÷3,0, борная кислота (H3BO3) - 13,0÷15,0. Изобретение позволяет снизить энергоемкость и упростить процесс получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена, увеличить прочность композиционного электродного материала и увеличение стабильности и эффективности его работы. 1 табл., 3 пр.

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным накопителям электрической энергии - электролитическим конденсаторам, композиционные слои которых существенно отличаются по составу и физической структуре. Пленочный конденсатор содержит разделенные диэлектриком пакетные электроды, полимерное основание которых выполнено из высокопористого рифленого материала, покрытого токопроводящим слоем, оснащенным токоотводом. Полимерная основа конденсаторной структуры выполнена из углеродных волокон бусофита, металлизированных с поверхности пористым слоем титана толщиной 0,2-2 мкм, а токоотводы толщиной 5-20 мкм выполнены композитными: бусофит и титановый слой с покрытием из высокопроводного металла, преимущественно меди, серебра. Повышение удельной энергоемкости многослойной пленочной структуры конденсатора (не менее 40 Вт·час/кг), при снижении внутреннего омического сопротивления, является техническим результатом изобретения. 1 ил.

Изобретение относится к области электротехники, а именно к способу повышения удельной энергии устройства накопления энергии, например, суперконденсатора. Способ включает увеличение емкости устройства накопления энергии нанесением материала в пористой структуре устройства накопления энергии с помощью процесса атомно-слоевого осаждения, предназначенного для увеличения расстояния, на которое проникает электролит внутри каналов пористой структуры, или размещением диэлектрического материала в пористой структуре. Другой способ включает отжиг устройства накопления энергии, чтобы вызвать диффузию электропроводящего вещества к поверхности структуры и формирование на ней электропроводящего слоя. Другие способы увеличения удельной энергии включают повышение напряжения пробоя, формирование псевдоконденсатора, осаждение электропроводящего материала в пористой структуре. Повышение емкости и удельной энергии устройства накопления энергии является техническим результатом изобретения. 5 н. и 29 з.п. ф-лы, 12 ил.

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5), содержащие легированный графен, и слой (6) с ионной проводимостью, расположенный между положительным и отрицательным электродами (4), (5), при этом тип легирования графена на положительном электроде (4) противоположен типу легирования графена на отрицательном электроде (5). Повышение удельной электрической емкости суперконденсатора, является техническим результатом изобретения. 5 з.п. ф-лы, 5 ил., 1 пр.

Изобретение относится к области электронной техники и может быть использовано в производстве конденсаторов. Способ включает подготовку поверхности катодной танталовой обкладки перед нанесением покрытия, нанесение гальванического рутениевого покрытия на поверхность обкладки и анодное оксидирование рутениевого покрытия, при этом подготовку поверхности обкладки проводят методом центрифугирования или электрофорезом для нанесения неагломерированного танталового порошка с удельным зарядом до 150000 мкКл/г и средней фракцией 2,5 мкм и последующим вакуумным спеканием при остаточном давлении 10-5 мм рт.ст., температуре 1050°С в течение 1 часа, а после окончания спекания осуществляют гальваническое нанесение рутениевого покрытия толщиной 2,0-4,0 мкм из электролита, содержащего, г/л: Ru(OH)Cl3 (в пересчете на металл) 5-10; NH2SO3H 30 и воду деионизованную или дистиллированную до 1 л, при температуре 60±10°С, напряжении 3 В, катодной плотности тока 2-6 А/дм2, количестве циклов 4-5 и времени одного цикла 10-15 мин, а анодное оксидирование проводят в 38%-ном растворе серной кислоты. Технический результат: повышение удельной емкости и надежности конденсаторов при работе в режиме перезарядки в широком диапазоне температур до 125°С, снижение тока утечки и тангенса угла потерь. 1 з.п. ф-лы, 8 табл., 5 пр.
Наверх