Способ анализа в гиперболоидном масс-спектрометре типа "трехмерная ионная ловушка"

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при создании приборов с высокой разрешающей способностью и чувствительностью. Способ анализа в гиперболоидном масс-спектрометре типа «трехмерная ионная ловушка» заключается в том, что ввод ионов в объем ловушки осуществляют одновременно с изменением параметров электрического поля (амплитуды и частоты). При этом изменение амплитуды и частоты ВЧ напряжения, прикладываемого к электродам анализатора, осуществляют таким образом, чтобы рабочая точка анализируемого иона на диаграмме стабильности не изменяла своего положения , где U(t) - амплитуда размаха, - частота ВЧ напряжения. Технический результат: захват ионов с высокой эффективностью без снижения диапазона захватываемых масс, регистрируемых при снятии одного скана. 1 ил.

 

Изобретение относится к области масс-спектрометрии и может быть использовано при создании гиперболоидных масс-спектрометров с высокой разрешающей способностью и чувствительностью.

Известен способ анализа в гиперболоидном масс-спектрометре типа "трехмерная ионная ловушка", по которому путем подбора параметров электрического поля ограничивают возможный диапазон захватываемых масс. За счет этого реализуется необходимая разрешающая способность прибора. По этому способу ионы образуют в рабочем объеме анализатора путем ионизации электронным потоком, после чего ионы сортируют некоторое время, необходимое для достижения нужной степени сортировки, а потом выводят в измерительное устройство [1].

Известный способ обладает рядом недостатков, основной из которых - низкая эффективность использования пробы и вводимого в анализатор электронного потока. Это приводит к существенному уменьшению скорости сканирования массового диапазона и непомерной электронной нагрузке на электроды прибора, приводящей к быстрому загрязнению последних и ограничению срока службы анализатора.

Известен способ анализа ионов в гиперболоидном масс-спектрометре типа трехмерной ионной ловушки, по которому ионы вводят извне в рабочий объем анализатора и захватывают в широком диапазоне масс за счет соударений ионов с молекулами буферного газа [2]. В известном способе устраняются отмеченные выше недостатки.

Однако известный способ также обладает рядом недостатков, главным из которых является необходимость присутствия в рабочем объеме анализатора буферного газа при относительно высоком давлении (приблизительно 1 мТорр). Основной функцией буферного газа в известном способе является уменьшение кинетической энергии ионов посредством столкновений, в результате чего осуществляется снижение амплитуды колебаний ионов и происходит сжатие ионов к центру ловушки. Недостатки: низкая эффективность захвата ионов (при давлении 1 мТорр - порядка 0.2%) и дискриминация ионов по массам.

Известен способ анализа ионов в гиперболоидном масс-спектрометре типа трехмерной ионной ловушки, по которому ионы вводят извне в объем ловушки одновременно с изменением амплитуды ВЧ напряжения, прикладываемого к электродам анализатора [3]. Известный способ позволяет снизить требуемое давление буферного газа, повысить эффективность захвата ионов более чем на порядок и компенсировать дискриминацию ионов по массам.

Однако известный способ обладает существенным недостатком. Изменение параметров электрического поля приводит к существенному изменению положения рабочих точек ионов на диаграмме стабильности. Таким образом, по известному способу увеличение чувствительности гиперболоидных масс-спектрометров сопровождается существенным уменьшением диапазона захватываемых масс в пределах одного скана.

Целью настоящего изобретения является устранение недостатка известного способа, повышение чувствительности гиперболоидных масс-спектрометров типа "трехмерная ионная ловушка" без уменьшения диапазона захватываемых масс в пределах одного скана.

Указанная цель достигается тем, что в рабочий объем трехмерной ионной ловушки, к электродам которой прикладывается ВЧ напряжение, вводят ионы, накапливают их там, при этом рабочие точки анализируемых ионов располагают в стабильной области общей диаграммы стабильности, и выводят накопленные ионы из объема ловушки в детекторную систему путем перевода их рабочих точек в нестабильную область изменением параметров электрического поля: амплитуды или частоты ВЧ напряжения. При этом ввод ионов в объем ловушки производят одновременно с изменением во времени амплитуды и частоты ВЧ напряжения, прикладываемого к электродам анализатора. Изменение же амплитуды и частоты ВЧ напряжения осуществляют таким образом, чтобы рабочая точка анализируемого иона на диаграмме стабильности не изменяла своего положения. Такое изменение возможно при условии соблюдения следующего соотношения:

где U(t) - амплитуда и - частота ВЧ напряжения, прикладываемого к электродам анализатора, соответственно.

В этом случае по предлагаемому способу амплитуда колебаний ионов, вводимых в объем анализатора гиперболоидного масс-спектрометра при одновременном увеличении амплитуды и квадрата частоты ВЧ напряжения, неизменно снижается для всех ионов, рабочие точки которых лежат внутри стабильной области. При этом, как показывают результаты анализа, эффективность захвата ионов по данному способу эквивалентна эффективности захвата по известному способу, однако диапазон захватываемых масс за один скан охватывает всю стабильную область. Таким образом, предлагаемый способ анализа позволяет производить захват ионов с высокой эффективностью без снижения диапазона захватываемых масс.

На чертеже приведены зависимости амплитуд колебаний ионов по r- и z-координатам при изменении параметров электрического поля внутри анализатора по предлагаемому способу. Видно, что амплитуды колебаний по r- и z-координатам непрерывно уменьшаются (данные получены для импульсного сигнала типа "меандр").

Предлагаемый способ анализа позволяет существенно (более чем на порядок) повысить чувствительность приборов без снижения диапазона захватываемых масс. Реализация предлагаемого способа не вызывает трудностей.

ЛИТЕРАТУРА

1. Шеретов Э.П., Зенкин В.А., Болигатов О.И. Трехмерный квадрупольный масс-спектрометр с накоплением / Приборы и техника эксперимента, 1971, №1.

2. G.C.Stafford, P.E.Kelly, J.E.P.Syka, W.Reynolds, J.E.J.Todd, Int. J. Mass Spectrom. Ion Proces. 60 (1984) 85.

3. V.M.Doroshenko, R.J.Cotter. Method and apparatus for trapping ions by increasing trapping voltage during ion introduction. United States Patent №5399857, 1995.

Способ анализа в гиперболоидном масс-спектрометре типа «трехмерная ионная ловушка», по которому в рабочий объем ловушки, к электродам которой прикладывается ВЧ напряжение, вводят ионы, накапливают там, при этом рабочие точки анализируемых ионов располагают в стабильной области общей диаграммы стабильности, и выводят накопленные ионы из объема ловушки в детекторную систему путем перевода их рабочих точек в нестабильную область изменением параметров электрического поля, отличающийся тем, что ввод ионов в объем ловушки осуществляют одновременно с изменением во времени амплитуды и частоты ВЧ напряжения, причем амплитуду и частоту ВЧ напряжения изменяют во времени таким образом, чтобы рабочая точка анализируемого иона на диаграмме стабильности не изменяла своего положения

где U(t) - амплитуда, - частота ВЧ напряжения.



 

Похожие патенты:

Изобретение относится к области динамической масс-спектрометрии и может быть использовано для совершенствования способов развертки масс, улучшения аналитических и потребительских свойств гиперболоидных и времяпролетных масс-спектрометров.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при разработке приборов данного вида с высокой чувствительностью и разрешающей способностью.

Изобретение относится к динамической масс-спектрометрии и может быть использовано для улучшения потребительских свойств и увеличения срока службы масс-спектрометров с гиперболоидными электродными системами.

Изобретение относится к области масс-спектрометрии и может быть использовано при создании масс-спектрометров типа «ионная ловушка» с высокими разрешением и чувствительностью.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при создании приборов с высокой разрешающей способностью и скоростью сканирования спектра масс.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при создании приборов с высокой степенью сортировки заряженных частиц. .

Изобретение относится к масс-спектрометрии и может быть использовано при создании квадрупольных масс-спектрометров с высокой разрешающей способностью и чувствительностью.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при разработке приборов данного типа с высокой чувствительностью и разрешающей способностью.

Изобретение относится к гиперболоидной масс-спектрометрии и может быть использовано при разработке приборов данного типа с высокими чувствительностью и разрешающей способностью.

Изобретение относится к области масс-спектрометрического анализа, в частности к ионной ловушке, мультипольной электродной системе и электродному полюсу

Изобретение относится к масс-спектрометрическим системам, а именно к ионным ловушкам масс-анализаторов

Изобретение относится к масс-спектроскопии а более конкретно к квадрупольным масс-анализаторам

Изобретение относится к области динамической масс-спектрометрии и предназначено для создания монопольных масс-спектрометров

Изобретение относится к области масс-спектрометрии и может быть использовано при создании квадрупольных масс-спектрометров пролетного типа с высокой разрешающей способностью и чувствительностью

Изобретение относится к области масс-спектрометрии и может быть использовано при создании квадрупольных масс-спектрометров пролетного типа с высокой разрешающей способностью и чувствительностью

Изобретение относится к области масс-спектрометрии

Изобретение относится к области масс-спектрометрии, а именно к конструкции линейной ионной ловушки, ее системы электродов, формирующей удерживающее поле

Изобретение относится к ионно-оптическим устройствам

Способ анализа заряженных частиц (ионов) в гиперболоидных масс-спектрометрах относится к гиперболоидной масс-спектрометрии и может быть использован при создании аналитических приборов с высокой разрешающей способностью и чувствительностью. Технический результат- повышение разрешающей способности за счет использования областей общей диаграммы стабильности с повышенной эффективностью сортировки заряженных частиц по удельным зарядам. Высокая чувствительность достигается тем, что при разрешениях несколько сот тысяч удалось найти условия, при которых число избранных ионов, удерживаемых в объеме анализатора, достигает 40%. Анализируемые заряженные частицы вводят в анализатор масс-спектрометра, сортируют по удельным зарядам путем воздействия на них импульсным высокочастотным с постоянной составляющей электрическим полем, заставляя ионы с избранным удельным зарядом совершать движение по "базовым траекториям", а ионы с отличным от избранного значения удельным зарядом выводят из рабочего объема на полезадающие электроды анализатора, после чего оставшиеся в объеме анализатора ионы с избранным значением удельного заряда направляют в измерительное устройство. Рабочую точку ионов с избранным удельным зарядом на общей диаграмме стабильности путем подбора параметров электрического поля размещают на прямой, перпендикулярной оси общей диаграммы стабильности, проходящей через точку пересечения этой оси с границей зоны стабильности, соответствующей значению параметра стабильности β0=-1, при этом по другой координатной оси рабочую точку располагают в одной из стабильных областей общей диаграммы стабильности. 5 ил.
Наверх