Способ управления потреблением энергии солнечной батареи в режиме максимальной мощности

Заявляемое техническое решение относится к преобразовательной технике и предназначено для управления потреблением энергии солнечной батареи в режиме максимальной мощности и может найти широкое применение в системах электропитания с ограниченными по мощности источниками энергии. Технический результат - повышение быстродействия и за счет этого расширение функциональных возможностей для работы при изменяющихся параметрах нагрузки или солнечной батареи. Элемент формирования монотонного характера изменения потребляемой мощности на входе импульсного преобразователя напряжения задает монотонный характер изменения тока (напряжения) солнечной батареи при коммутации ключевого элемента импульсного преобразователя напряжения, что позволяет отслеживать переход через максимум мощности солнечной батареи и переключать ключевой элемент импульсного преобразователя напряжения после смены знака полярности производной по времени сигнала, пропорционального текущему значению мощности солнечной батареи, с положительного на отрицательный. 4 ил.

 

Заявляемое техническое решение относится к преобразовательной технике и предназначено для управления потреблением энергии солнечной батареи в режиме максимальной мощности и может найти широкое применение в системах электропитания с ограниченными по мощности источниками энергии.

Известен способ управления потреблением энергии солнечной батареи в режиме максимальной мощности посредством импульсного преобразователя напряжения, основанный на поддержании напряжения солнечной батареи на уровне расчетного оптимального значения [1].

Недостатком известного способа управления является низкая точность управления из-за сложности учета влияния многих параметров на значение оптимального напряжения солнечной батареи.

Наиболее близким по технической сущности к заявляемому изобретению является способ управления потреблением энергии солнечной батареи в режиме максимальной мощности, основанный на измерении мощности, потребляемой от солнечной батареи, формировании сигнала, пропорционального среднему за период измерения значению мощности солнечной батареи, и пошаговом изменении скважности включения ключевых элементов импульсного преобразователя напряжения, подключенного к выводам солнечной батареи через элемент формирования монотонного характера изменения потребляемой мощности, при этом направление изменения скважности включения ключевых элементов меняют при уменьшении среднего за период измерения значения мощности солнечной батареи и не меняют при ее увеличении [2].

Известный способ управления обеспечивает эксплуатацию солнечной батареи в режиме максимальной мощности при работе на нагрузку с постоянным током потребления, либо с постоянным напряжением, либо с постоянным сопротивлением.

Недостатком известного способа управления является низкое быстродействие, так как длительность периода измерения среднего значения мощности солнечной батареи должна быть больше длительности переходного процесса от изменения скважности включения ключевых элементов, а длительность периода пошагового изменения скважности включения ключевых элементов должна быть больше длительности периода измерения. Поэтому при изменении параметров нагрузки или солнечной батареи со скоростью, превышающей скорость пошагового отслеживания, невозможно обеспечить эксплуатацию солнечной батареи в режиме максимальной мощности.

Цель технического решения - повышение быстродействия и за счет этого расширение функциональных возможностей для работы при изменяющихся параметрах нагрузки или солнечной батареи.

Поставленная цель достигается тем, что в способе управления потреблением энергии солнечной батареи в режиме максимальной мощности, основанном на измерении мощности потребляемой от солнечной батареи и управлении потреблением энергии посредством импульсного преобразователя напряжения, подключенного к выводам солнечной батареи через элемент формирования монотонного характера изменения потребляемой мощности, формируют сигнал, пропорциональный текущему значению мощности солнечной батареи, переключение ключевого элемента импульсного преобразователя напряжения осуществляют после смены знака полярности производной по времени сигнала, пропорционального текущему значению мощности солнечной батареи, с положительного на отрицательный.

Сущность технического решения заключается в том, что элемент формирования монотонного характера изменения потребляемой мощности на входе импульсного преобразователя напряжения задает монотонный характер изменения тока (напряжения) солнечной батареи при коммутации ключевого элемента импульсного преобразователя напряжения, что позволяет отслеживать переход через максимум мощности солнечной батареи и переключать ключевой элемент импульсного преобразователя напряжения после смены знака полярности производной по времени сигнала, пропорционального текущему значению мощности солнечной батареи, с положительного на отрицательный.

На фиг.1 приведена схема устройства, реализующего предложенный способ управления, на фиг.2 - схема системы электропитания, обеспечивающая эксплуатацию солнечной батареи в режиме максимальной мощности, на фиг.3 - схема силовой части импульсного преобразователя напряжения (а - понижающего, б - повышающего, в - понижающе-повышающего) с элементом формирования монотонного характера изменения мощности на входе, на фиг.4 - вольт-амперная и вольт-ватная характеристики солнечной батареи.

Устройство, реализующее предложенный способ управления (фиг.1), содержит измеритель мощности 1, формирователь знака полярности производной по времени 2, генератор импульсов 3, счетчик импульсов 4, Т-триггер 5. Вход напряжения измерителя мощности 1 соединен с выводом «U» устройства, токовый вход измерителя мощности 1 соединен с выводом «I» устройства, выход измерителя мощности 1 соединен с входом формирователя знака полярности производной по времени 2, счетный вход счетчика импульсов 4 соединен с генератором импульсов 3, инверсный вход сброса в нулевое состояние счетчика импульсов 4 соединен с выходом формирователя знака полярности производной по времени 2, выход счетчика импульсов 4 соединен с входом Т-триггера 5, выход Т-триггера 5 соединен с выводом «F» устройства.

Потребление энергии солнечной батареи в режиме максимальной мощности обеспечивает система электропитания (фиг.2), состоящая из солнечной батареи 6, устройства 7, реализующего предложенный способ управления, импульсного преобразователя напряжения 8, конденсатора выходного фильтра 9 и нагрузки 10. Солнечная батарея 6, конденсатор выходного фильтра 9 и нагрузка 10 имеют по два силовых вывода, первый силовой вывод солнечной батареи 6 соединен с шиной «С» системы электропитания, первый силовой вывод конденсатора выходного фильтра 9 и нагрузки 10 соединены с шиной «H» системы электропитания, второй силовой вывод солнечной батареи 6, конденсатора выходного фильтра 9 и нагрузки 10 соединены с общей шиной «М» системы электропитания. Импульсный преобразователь напряжения 8 имеет три силовых вывода «U», «Н», «М» и вывод управления «F», силовой вывод «U» импульсного преобразователя напряжения 8 соединен с шиной «С» системы электропитания, силовой вывод «Н» импульсного преобразователя напряжения 8 соединен с шиной «H» системы электропитания, силовой вывод «М» импульсного преобразователя напряжения 8 соединен с общей шиной «М» системы электропитания, вывод управления «F» импульсного преобразователя напряжения 8 соединен с выводом «F» устройства 7, вывод «U» устройства 7 соединен с шиной «С» системы электропитания, вывод «I» устройства 7 соединен с выходом датчика тока 11, включенного в силовую цепь солнечной батареи 6.

Тип импульсного преобразователя напряжения 8 - понижающий, повышающий или понижающе-повышающий - зависит от соотношения параметров солнечной батареи 6 и нагрузки 9.

При значениях оптимального напряжения солнечной батареи 6 выше требуемого напряжения на нагрузке 10, либо оптимального тока солнечной батареи 6 ниже тока нагрузки 10, либо сопротивления нагрузки 10 ниже отношения оптимального напряжения солнечной батареи 6 к оптимальному току солнечной батареи 6 в качестве импульсного преобразователя напряжения 8 используется импульсный преобразователь напряжения понижающего типа (фиг.3а), содержащий ключевой элемент 12, дроссель 13, диод 14 и конденсатор 15. Первый вывод конденсатора 15 и первый силовой вывод ключевого элемента 12 соединены с выводом «U» импульсного преобразователя напряжения понижающего типа, второй вывод конденсатора 15 и второй вывод диода 14 соединены с выводом «М» импульсного преобразователя напряжения понижающего типа, второй вывод дросселя 13 соединен с выводом «H» импульсного преобразователя напряжения понижающего типа, второй силовой вывод ключевого элемента 12, первый вывод диода 14 и первый вывод дросселя 13 соединены между собой, управляющий вывод ключевого элемента 12 соединен с выводом «F» импульсного преобразователя напряжения понижающего типа.

При значениях оптимального напряжения солнечной батареи 6 ниже требуемого напряжения на нагрузке 10, либо оптимального тока солнечной батареи 6 выше тока нагрузки 10, либо сопротивления нагрузки 10 выше отношения оптимального напряжения солнечной батареи 6 к оптимальному току солнечной батареи 6 в качестве импульсного преобразователя напряжения 8 используется импульсный преобразователь напряжения повышающего типа (фиг.3б), содержащий ключевой элемент 16, дроссель 13 и диод 17. Первый вывод дросселя 13 соединен с выводом «U» импульсного преобразователя напряжения повышающего типа, второй силовой вывод ключевого элемента 16 соединен с выводом «М» импульсного преобразователя напряжения повышающего типа, второй вывод диода 17 соединен с выводом «H» импульсного преобразователя напряжения повышающего типа, второй вывод дросселя 13, первый вывод диода 17 и первый силовой вывод ключевого элемента 16 соединены между собой, управляющий вывод ключевого элемента 16 соединен с выводом «F» импульсного преобразователя напряжения повышающего типа.

При значениях оптимального напряжения солнечной батареи 6 как выше, так и ниже требуемого напряжения на нагрузке 10, либо оптимального тока солнечной батареи 6 как ниже, так и выше тока нагрузки 10, либо сопротивления нагрузки 10 как ниже, так и выше отношения оптимального напряжения солнечной батареи 6 к оптимальному току солнечной батареи 6 в качестве импульсного преобразователя напряжения 8 используется импульсный преобразователь напряжения понижающе-повышающего типа (фиг.3в), содержащий два ключевых элемента 12 и 16, дроссель 13, конденсатор 15 и два диода 14 и 17. Первый вывод конденсатора 15 и первый силовой вывод ключевого элемента 12 соединены с выводом «U» импульсного преобразователя напряжения понижающе-повышающего типа, второй вывод конденсатора 15, второй вывод диода 14 и второй силовой вывод ключевого элемента 16 соединены с выводом «М» импульсного преобразователя напряжения понижающе-повышающего типа, второй вывод диода 17 соединен с выводом «Н» импульсного преобразователя напряжения понижающе-повышающего типа, второй вывод дросселя 13, первый вывод диода 17 и первый силовой вывод ключевого элемента 16 соединены между собой, второй силовой вывод ключевого элемента 12, первый вывод диода 14 и первый вывод дросселя 13 соединены между собой, управляющий вывод ключевых элементов 12 и 16 соединены с выводом «F» импульсного преобразователя напряжения понижающего типа.

Система электропитания (фиг.2) обеспечивает потребление энергии солнечной батареи 6 в режиме максимальной мощности следующим образом. При включении ключевого элемента импульсного преобразователя напряжения 8 происходит монотонное увеличение тока солнечной батареи I6 и монотонное уменьшение ее напряжения U6 в соответствии с вольт-амперной характеристикой солнечной батареи 6 (фиг.4). При использовании импульсного преобразователя напряжения понижающего типа (фиг.3а) или импульсного преобразователя напряжения понижающе-повышающего типа (фиг.3в) элементом формирования монотонного характера изменения напряжения U6 является конденсатор 15, а при использовании импульсного преобразователя напряжения повышающего типа (фиг.3б) элементом формирования монотонного характера изменения тока I6 является дроссель 13. Если при этом мощность Р6, выдаваемая солнечной батареей 6, растет, значит растет и сигнал U1 на выходе измерителя мощности 1 (фиг.1), на выходе формирователя знака полярности производной по времени 2 формируется сигнал U2 высокого уровня, который сбрасывает счетчик импульсов 4 в нулевое состояние. После увеличения тока солнечной батареи 6 выше оптимального I6>Iопт и соответственно уменьшения напряжения солнечной батареи 6 ниже оптимального U6<Uопт происходит уменьшение мощности, выдаваемой солнечной батареей P6, и сигнала U1 на выходе измерителя мощности 1, на выходе формирователя знака полярности производной по времени 2 формируется сигнал U2 низкого уровня, который отменяет сброс в нулевое состояние счетчика импульсов 4, разрешая счет импульсов генератора импульсов 3, при заполнении счетчика импульсов 4 на его выходе формируется сигнал переноса, который переключает состояние Т-триггера 5, соответственно выходной сигнал «F» Т-триггера 5 отключает ключевой элемент импульсного преобразователя напряжения 8, при этом ток I6 солнечной батареи 6 уменьшается, а ее напряжение U6 увеличивается. Мощность P6, выдаваемая солнечной батареей 6, растет, соответственно на выходе формирователя знака полярности производной по времени 2 формируется сигнал U2 высокого уровня, который сбрасывает счетчик импульсов 4 в нулевое состояние. После уменьшения тока солнечной батареи 6 ниже оптимального I6<Iопт и соответственно увеличения напряжения U6 солнечной батареи 6 выше оптимального U6>Uопт происходит уменьшение мощности Р6, выдаваемой солнечной батарей 6. На выходе формирователя знака полярности производной по времени 2 формируется сигнал U2 низкого уровня, который отменяет сброс в нулевое состояние счетчика импульсов 4, разрешая счет импульсов генератора импульсов 3, при заполнении счетчика импульсов 4 на его выходе формируется сигнал переноса, который переключает состояние Т-триггера 5, соответственно выходной сигнал «F» Т-триггера 15 включает ключевой элемент импульсного преобразователя напряжения 8 и т.д.

Емкость счетчика импульсов 4 определяет длительность задержки на переключение ключевого элемента импульсного преобразователя напряжения 8 после перехода значения тока и напряжения солнечной батареи 6 через оптимальное. Эта задержка необходима для ограничения частоты переключения ключевого элемента импульсного преобразователя 8.

Таким образом, в системе электропитания с предлагаемым способом управления потреблением энергии солнечной батареи в режиме максимальной мощности переключение ключевого элемента импульсного преобразователя напряжения 8 происходит после перехода значения выдаваемой мощности солнечной батареи 6 через максимум, что обеспечивает поддержание режима максимальной мощности солнечной батареи 6 при любых параметрах солнечной батареи 6 и нагрузки 9.

Литература

1. Поляков С.А., Ракова Л.Н., Чернышев А.И., Эльман В.О. Зонный принцип управления режимами комплексов автоматики и стабилизации систем электроснабжения // Системы автономного электроснабжения и электромеханические устройства. Т.1 Аппаратура управления и преобразования энергии. - Сб. научных трудов НПО «Полюс». Томск. 1992. С.65-70.

2. Шиняков Ю.А., Гордеев К.Г., Черданцев С.П., Обрусник П.В. Варианты построения экстремальных шаговых регуляторов мощности солнечных батарей // Труды ВНИИЭМ. Электромеханические устройства космических аппаратов. М., 1997. Т.97. С.83-92.

Способ управления потреблением энергии солнечной батареи в режиме максимальной мощности, основанный на измерении потребляемой от солнечной батареи мощности и управлении потреблением энергии посредством импульсного преобразователя напряжения, подключенного к выводам солнечной батареи через элемент формирования монотонного характера изменения мощности, отличающийся тем, что переключение ключевого элемента импульсного преобразователя напряжения осуществляют после смены знака полярности производной по времени сигнала, пропорционального текущему значению потребляемой от солнечной батареи мощности, с положительного на отрицательный.



 

Похожие патенты:

Изобретение относится к вторичным источникам электропитания радиоэлектронной аппаратуры в качестве первичного источника солнечной батареи (СБ). .

Изобретение относится к электротехнической промышленности и может быть использовано при создании и эксплуатации автономных систем электропитания искусственных спутников Земли (ИСЗ)

Группа изобретений относится к области фотогальванических генераторов. Технический результат заключается в повышении КПД преобразования генератора. Для этого предложен способ управления фотогальваническим генератором, содержащим по меньшей мере один фотогальванический элемент и множество n соединенных параллельно статических преобразователей, при этом каждый преобразователь соединен электрически по меньшей мере с одним фотогальваническим элементом, включающий этапы, на которых определяют мощность, генерируемую указанным по меньшей мере одним фотогальваническим элементом и сравнивают ее с пиковой мощностью; осуществляют сравнение с пороговыми значениями P1, P2,…, Pn-1; при этом пороги определяют как значения мощностей по существу в точке пересечения кривых КПД при возрастающем числе преобразователей для, по меньшей мере, одного фотогальванического элемента; подключают i преобразователей, если измеренное значение мощности находится в пределах от Pi-1 до Pi, или подключают все преобразователи, если измеренное значение мощности превышает Pn-1. 3 н. и 19 з.п. ф-лы, 6 ил., 3 табл.

Группа изобретений относится к области фотоэлектрических генераторов. Технический результат заключается в оптимизации управления энергией, производимой каждой группой фотоэлектрических элементов генератора, с целью наилучшего согласования мощности генератора с потребностями нагрузки и/или эффективной компенсацией отказов и/или колебаний инсоляции, оказывающей воздействие на некоторые элементы. Для этого предложена система электронного управления фотоэлектрическим генератором, содержащая: множество статических микропреобразователей, каждый из которых электрически соединен с одним или несколькими фотоэлектрическими элементами, являющимися частью всей совокупности указанных элементов генератора, по меньшей мере один модуль реконфигурации, предназначенный для переноса потоков энергии от указанных микропреобразователей к нагрузке, центральный электронный процессор, предназначенный для управления изменением потоков энергии, переносимых указанным по меньшей мере одним модулем реконфигурации, и для управления замыканием накоротко или шунтированием по меньшей мере одного микропреобразователя через указанный по меньшей мере один модуль реконфигурации. 4 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях постоянного тока с нелинейными параметрами в альтернативных источниках энергии. Технический результат - повышение количества энергии, отбираемой от солнечной батареи, В способе питания нагрузки от солнечной батареи использован преобразователь повышающего типа, в котором коммутацию ключевых элементов осуществляют синхронизирующим и управляющим сигналами, измеряют выходную характеристику преобразователя и формируют управляющий сигнал, эквивалентный коэффициенту заполнения силового ключа. 2 ил.

Изобретение относится к солнечной энергетике и предназначено для для ориентации по Солнцу источников гелиоэнергетики и других источников электромагнитного излучения (ЭМИ). Технический результат – повышение точности и устойчивости ориентации источников гелиоэнергетики независимо от географической широты и погодных условий. Для этого в способе ориентации посредством направленной антенны принимают электромагнитные колебания, излучаемые Солнцем и отраженные рефлектором, которые снимают посредством вибратора, сканирующего в фокальной плоскости антенны, перпендикулярной оси рефлектора. В спектре принятого сигнала подавляют тепловой шум антенно-фидерных устройств. Полученный сигнал преобразуют в сигнал в узкой полосе частот и выделяют огибающую этого сигнала, которую распределяют по тактам времени в соответствии с положением вибратора относительно секторов приема. Сигнал отклонения положения антенны в азимутальном направлении формируют по разности уровней усредненных составляющих огибающей, при прохождении вибратора горизонтальных секторов приема, сигнал отклонения положения антенны по углу места - при прохождении вертикальных секторов приема. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к солнечной энергетике, в частности к получению электрической энергии путем прямого преобразования солнечного излучения, и приборостроению. Предложен способ повышения эффективности отбора электрической энергии от параллельно соединенных батарей фотоэлектрических преобразователей, имеющих различные напряжения, или при шунтировании диодом части фотоэлектрических преобразователей вследствие затенения, загрязнения, выхода из строя. Способ заключается в их согласовании посредством последовательного включения в них дополнительного элемента питания с изменяемыми электрическими характеристиками, номинал которых устанавливается из соображения получения максимальной мощности. Электрическая энергия в дополнительный элемент питания подается от этих же батарей фотоэлектрических преобразователей через устройство, обеспечивающее гальваническую развязку, или внешнего источника электрической энергии. Обеспечивается повышение эффективности отбора электрической энергии от батарей фотоэлектрических преобразователей. 2 н. и 6 з.п. ф-лы, 6 ил.
Наверх