Газотурбинная установка

Изобретение относится к теплоэнергетическому машиностроению и может быть использовано в различных отраслях и на компрессорных станциях газопроводов. Газотурбинная установка содержит турбину, компрессор, регенератор и не менее одной выносной камеры сгорания. Камера сгорания имеет каналы для течения горячего воздуха на лопатки турбины. Выход регенератора соединен с входом камеры сгорания. К наружному корпусу газотурбинной установки с одной стороны крепится задний гребень обоймы на выходе турбины, а с другой - корпус компрессора, образуя общую кольцевую полость. Внутри кольцевой полости монтируются выходная часть корпусов камер сгорания, заканчивающаяся переходным патрубком с внутренним конфузорным каналом, закрепленным в передней части обоймы на входе в турбину, плавно переходящим в кольцевой канал для подвода горячего газа в турбину и препятствующим попаданию в нее воздуха из компрессора. Выход компрессора через общую кольцевую полость и отверстия в наружном корпусе соединен с входом регенератора. Изобретение повышает КПД газотурбинной установки, уменьшает термические напряжения ее элементов за счет их равномерного и более эффективного охлаждения и увеличивается эксплуатационный ресурс работы установки. 1 з п. ф-лы, 2 ил.

 

Изобретение относится к теплоэнергетическому машиностроению и может быть использовано в различных отраслях промышленности и на компрессорных станциях газопроводов.

Как правило, газотурбинный блок состоит из компрессора, турбины и одной или нескольких камер сгорания, которые могут быть встроенными или выносными (подвальными или бесподвальными).

Известна газотурбинная установка, содержащая газотурбинный блок (ГБ) и рекуперативный воздухоподогреватель (РВП), соединенные между собой отводящими и подводящими газовыми и воздушными трубопроводами с устройствами для компенсации термических расширений, установленных на фундаменте, вблизи корпуса ГБ, неподвижной опоры, обеспечивающей возможность жесткого закрепления воздушных трубопроводов, причем неподвижная опора выполнена в виде полого цилиндра, во внутренней полости которой размещен трехходовой регулирующий расход воздуха клапан (патент РФ №2225521).

Надежность конструкции вызывает сомнения, т.к. жесткое крепление газопроводов к неподвижной опоре при значительных термических напряжениях не гарантирует их целостность.

Известны конструкции газотурбинных установок (ГТУ) типа ТВ 3000, ТВ 5000 фирмы Ruston, публикация в журнале "Турбомашиностроение", Нью-Йорк, США, 1978-79 г., (published by Turbomachinery publications, Ins. Norwark. 1978-79 у., Connecticut 06855, USA), предназначенные для перекачки товарной нефти.

Конструкция ГТУ традиционна и включает в себя: компрессор, выносные камеры сгорания, газовую турбину и наружный корпус, являющийся частично общим для компрессора и турбины, т.к. он соединен с выходом компрессора и входом в турбину. Установка спроектирована таким образом, что выход воздуха из компрессора происходит в кольцевую полость между компрессором и турбиной, в которой расположены выходные части жаровых труб камер сгорания и переходные патрубки с каналами для раздачи продуктов сгорания по окружности перед сопловым аппаратом на входе в турбину.

Поток воздуха после компрессора омывает жаровые трубы, обтекает переходные патрубки и обойму соплового аппарата, затем меняет направление движения на обратное и через калибрующие отверстия поступает в камеры сгорания.

Эта конструкция позволяет повысить надежность работы установки за счет более глубокого и равномерного охлаждения камер сгорания и переходных патрубков.

Однако, следует отметить, что т.к. эти ГТУ применяются для перекачки товарной нефти, то температура газа на входе в турбину относительно невелика.

Основными недостатками известного ГТУ является отсутствие регенерации отходящего газа, что снижает КПД установки.

Известно, что высокой экономичностью обладают газотурбинные установки (ГТУ) регенеративного типа с утилизацией теплоты отходящих от турбины газов.

Наличие регенератора в составе ГТУ существенно повышает ее КПД.

Известна газотурбинная установка с регулированием тепловой мощности, содержащая газотурбинный блок, включающий компрессор, камеру сгорания и турбину, установленный последовательно с ним по газу регенератор, сообщенный подводящим воздуховодом с выходом компрессора, а отводящим воздуховодом с камерой сгорания, и утилизационный теплообменник. Кроме того, она снабжена соединяющим подводящий и отводящий воздуховоды байпасным воздуховодом и устройством для регулирования расхода воздуха, проходящего по отводящему и байпасному воздуховодам, которое выполнено или в виде трехходового клапана, установленного в месте соединения байпасного и отводящего воздуховодов, или в виде установленных в байпасном и отводящем воздуховодах отдельных регулирующих клапанов, патент РФ (патент РФ №2224901).

Применение газового регулирования ведет к повышению массогабаритных показателей установки. Это связано с тем, что объемный расход газа, имеющего высокую температуру (tГ=500...600°C) и низкое (близкое к атмосферному) давление, из-за малой его плотности весьма велик (объемный расход газа много больше объемного расхода сжатого воздуха). Для пропуска газа по байпасному газоходу последний должен иметь большие размеры поперечного сечения. Как следствие, велики и размеры регулирующего органа клапана, находящегося под воздействием высокой температуры газового потока, что снижает эксплуатационную надежность ГТУ в целом.

Известны стационарные ГТУ регенеративного цикла типов: ГТК - 10М, ГТНР - 12, ГТНР - 16, "Надежда", которые изготавливаются ОАО "Невский завод" и предназначены для перекачки природного газа (Краткий номенклатурный перечень продукции ОАО "Невский завод", "Турбины и компрессоры", Спецвыпуск №12 (№3 - 2000 г.), С-Петербург).

Наиболее близким по технической сущности к предлагаемому изобретению является ГТУ типа ГТНР - 16, которая разработана для замены ГТК - 10, которые выработали назначенный ресурс. Конструкция этих ГТУ описана в журнале "Турбины и компрессоры", выпуск №№3, 4 (20, 21), 2002 г.

ГТУ содержит: компрессор, одиночную выносную камеру сгорания подвального типа, регенератор, газовую турбину, два корпуса - улитки для отвода воздуха после компрессора в регенератор и подвода газа после камеры сгорания в турбину, а также наружный корпус.

Воздух входит в компрессор, где происходит его сжатие. Далее через выхлопной патрубок направляется в регенератор для подогрева выхлопными газами турбины, затем поступает в камеру сгорания, где его температура повышается до заданного значения и по переходному патрубку сложной конструкции приходит в турбину, расширяется в ней и через выхлопной патрубок частично сбрасывается в атмосферу.

Использование регенератора в схеме ГТУ позволяет реализовать более низкую оптимальную степень повышения давления в компрессоре и повысить КПД установки за счет экономии топлива при умеренной температуре газа перед турбиной.

Дальнейшее повышение КПД в ГТУ с регенератором возможно только при увеличении температуры газа перед турбиной. Это требует дополнительного охлаждения корпуса - улитки (переходного патрубка).

Данная конструкция не обеспечивает необходимую глубину охлаждения, что является ее недостатком.

Сложная конфигурация улитки для отвода газа от камеры сгорания в турбину и ее габариты ограничивают применение высоких температур потока газа, поэтому возникают трудности с обеспечением равномерного распределения температур по ее узлам.

Ввиду неравномерного подвода воздуха на охлаждение улитки и несимметричности самой улитки возникает существенное различие в температурах стенки в окружном, радиальном и осевом направлениях, что приводит к их неравномерным термическим напряжениям и короблению деталей.

Технической задачей изобретения является повышение надежности работы и увеличение ресурса работы газотурбинной установки с одновременным повышением ее КПД за счет повышения температуры газового потока, организации эффективного охлаждения элементов установки при регенерации теплоты отходящих газов.

Технический результат достигается за счет того, что в газотурбинную установку, содержащую турбину, компрессор, по крайней мере, одну выносную камеру сгорания, имеющую каналы для течения горячего воздуха на лопатки турбины, а также наружный корпус и регенератор, выход которого соединен с входом камеры сгорания, внесены изменения, а именно:

- изменена конструкция наружного корпуса, к которому с одной стороной крепится задний гребень обоймы на выходе турбины, а с другой - корпус компрессора, образуя общую кольцевую полость;

- внутри общей полости монтируется выходная часть корпусов камер сгорания, заканчивающихся переходным патрубком, закрепленным в передней части обоймы на входе в турбину;

- образован переходный конфузорный канал для ввода горячего газа в турбину и препятствующего попаданию в нее воздуха из компрессора;

- выход компрессора через общую кольцевую полость и отверстия в наружном корпусе соединен с входом регенератора.

Кроме того, количество выносных камер сгорания должно быть больше одной, но преимущественно четное количество, и расположены они в общей кольцевой полости наружного корпуса, симметрично относительно осевой линии роторов компрессора и турбины.

Количество отверстий, соединяющих общую кольцевую полость с регенератором и выполненных в наружном корпусе, равно числу камер сгорания.

Изменение конструкции наружного корпуса - увеличение его протяженности до заднего гребня обоймы на выходе турбины, позволило увеличить глубину охлаждения элементов турбины: наружного корпуса, переходного патрубка, обоймы. Кроме того, благодаря увеличению объема общей кольцевой полости возможен индивидуальный подвод охладителя к каждому охлаждаемому элементу проточной части турбины. При этом уменьшаются термические напряжения и перемещения под действием внутреннего давления.

Таким образом, выходная часть компрессора и турбина заключены в единый симметричный относительно осевой линии роторов наружный корпус, который имеет существенные преимущества, по сравнению с обычно применяемыми, для регенеративных газовых турбин раздельными корпусами.

Кроме того, конструкция наружного корпуса позволяет исключить внутри его застойные зоны, т.к. в верхней части наружного корпуса выполнено несколько отверстий относительно большого диаметра, которые соединяют общую кольцевую полость с входом регенератора по воздуху.

Выход переходного патрубка с внутренним конфузорным каналом выполнен плавно переходящим в горизонтальную часть, крепящуюся к обойме на входе турбины, для подачи газа на сопловые лопатки турбины, и препятствует попаданию воздуха с выхода компрессора на лопатки турбины. С наружной стороны корпус переходного патрубка омывается полным потоком воздуха после компрессора, что обеспечивает требуемую глубину охлаждения, в результате чего возможно дальнейшее повышение температуры газа перед турбиной.

Использование выносных камер сгорания позволяет: снизить теплонапряженность топочного объема камер сгорания, обеспечить необходимые требования по экологии и уменьшить потери на охлаждение деталей турбины.

Конструкция ГТУ с четным количеством выносных камер сгорания, расположенных под углом к осевой линии роторов компрессора и турбины, над корпусом компрессора, позволяет выполнить наружный корпус симметричным, что облегчает технологию его изготовления.

Количество отверстий, соединяющих общую кольцевую полость с регенератором, выбирается равным числу камер сгорания, с целью обеспечения равномерного температурного поля переходных патрубков с внутренним конфузорным каналом и наружного корпуса за счет более равномерного течения охладителя.

Это дает возможность выполнить как бесподвальную, так и подвальную компановку агрегата.

Изменения конструкции ГТУ иллюстрируются двумя чертежами.

На фиг.1 приведена общая компановка ГТУ, а на фиг.2 дан разрез А-А, чтобы показать размещение выносных камер сгорания относительно осевой линии роторов, а также воздуховод, соединяющий турбинный блок (ТБ) с регенератором.

На фиг.1 показаны: компрессор 1, общая кольцевая полость 2, образованная между компрессором 1 и турбиной 3, наружным корпусом 4 и обоймой 10, воздуховод 5, присоединенный к фланцу отверстия наружного корпуса 4, соединенный с регенератором (на фиг.1 не показан), угловой патрубок 6, соединяющий выход регенератора с входом выносной камеры сгорания 7, переходный патрубок 8, кольцевой канал 9, закрепленный в передней части обоймы 10, гребень 11 обоймы 10, который крепится к наружному корпусу 4.

На фиг.2 показаны расположение отверстий 12 в наружном корпусе, выносные камеры сгорания 7 и воздуховод 5, соединяющий ТБ с регенератором.

Работа газотурбинной установки мало отличается от работы прототипа. Запуск ГТУ является традиционным. Компрессор 1 является многоступенчатым и в нем происходит постепенное сжатие воздуха. Сжатый воздух после компрессора 1 поступает в общую кольцевую полость 2 наружного корпуса 4 и равномерно по окружности охлаждает полным расходом воздуха корпуса четырех камер сгорания 7, переходного патрубка с конфузорным каналом 8, кольцевого канала 9 и обоймы 10 турбины. Расположение отверстия 12 в наружном корпусе 4 обеспечивает отсутствие застойных зон, и весь воздух через воздуховоды 5 поступает на вход регенератора (на фиг.1 он не показан). В регенераторе осуществляется подогрев воздуха отходящими на выходе из турбины горячими газами и далее по воздуховоду горячий газ через угловой патрубок 6 поступает в камеры сгорания 7, где повышается температура рабочего тела, и по переходному патрубку 8 и кольцевому каналу 9 поступает в сопловый аппарат турбины. Кольцевой канал крепится к передней части обоймы 10, а задний гребень 11 обоймы 10 - к наружному корпусу 4.

Предлагаемая конструкция имеет ряд преимуществ перед известными техническими решениями, а именно:

- повышается КПД газотурбинной установки;

- улучшаются прочностные характеристики установки за счет конструкции наружного корпуса;

- значительно уменьшаются термические напряжения конструктивных элементов за счет равномерного и более эффективного охлаждения элементов ГТУ;

- конструкция наружного корпуса становится более технологичной, простой и менее металлоемкой за счет применения четного количества камер сгорания;

- увеличивается эксплуатационный ресурс работы установки.

В настоящее время разрабатывается техническая документация для внедрения предлагаемого изобретения в промышленность.

1. Газотурбинная установка, содержащая турбину и компрессор и не менее одной выносной камеры сгорания, имеющей каналы для течения горячего воздуха на лопатки турбины, наружный корпус, регенератор, выход которого соединен с входом камеры сгорания, отличающаяся тем, что к наружному корпусу с одной стороны крепится задний гребень обоймы на выходе турбины, а с другой - корпус компрессора, образуя общую кольцевую полость, внутри которой монтируются выходная часть корпусов камер сгорания, заканчивающаяся переходным патрубком с внутренним конфузорным каналом, закрепленным в передней части обоймы на входе в турбину, плавно переходящим в кольцевой канал для подвода горячего газа в турбину и препятствующим попаданию в нее воздуха из компрессора, причем выход компрессора через общую кольцевую полость и отверстия в наружном корпусе соединен с входом регенератора.

2. Газотурбинная установка по п.1, отличающаяся тем, что при четном количестве выносных камер сгорания последние расположены в общей кольцевой полости наружного корпуса симметрично относительно осевой линии роторов компрессора и турбины.



 

Похожие патенты:

Изобретение относится к области газотурбостроения, а именно к двигателям, работающим на газообразном топливе, и может найти применение для электростанций и других потребителей.

Изобретение относится к области двигателестроения, а конкретно к высокотемпературным газотурбинным двигателям с трубчатыми или трубчато-кольцевыми стехиометрическими камерами сгорания для дальней авиации, в том числе беспилотной и, в частности, к устройству сопловых аппаратов ступеней высокотемпературных охлаждаемых газотурбинных двигателей (ГТД) с трубчатыми или трубчато-кольцевыми камерами сгорания.

Изобретение относится к области машиностроения, авиастроения, судостроения, локомотивостроения, автомобилестроения, тракторостроения и может быть использовано в качестве привода для транспортных средств автомобильного, железнодорожного, воздушного и водного транспорта, а также передвижных и стационарных электростанций малой и средней мощности и привода стационарных и самоходных механизмов и устройств.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. .

Изобретение относится к силовым установкам, работающим на продуктах сгорания, и может быть использовано на тепловых электростанциях, в авиации и других отраслях промышленности, требующих газатурбинных установок /ГТУ/.

Изобретение относится к области газотурбинных двигателей, преимущественно наземных энергетических установок, работающих на газообразном топливе. .

Изобретение относится к двигателестроению, в том числе к мощным стационарным газотурбинным двигателям ГТД, предназначенным преимущественно для газоперекачивающих агрегатов, и может найти применение для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии

Изобретение относится к газотурбинным установкам для механического привода и для привода электрогенератора

Изобретение относится к области двигателей внутреннего сгорания

Изобретение относится к области двигателей внутреннего сгорания и может быть использовано на водном транспорте

Изобретение относится к газотуроинным энергетическим установкам и транспортным двигателям наземного, морского и воздушного назначения

Газотурбинный двигатель содержит компрессор, лопаточные диффузоры, канальный патрубок, кольцевую полость-ресивер, камеру сгорания, турбину. Турбина выполнена с охлаждаемым сопловым аппаратом, лопатки которого вдоль профиля пера от входной кромки имеют первую, вторую, третью и четвертую внутренние полости, соединенные с проточной частью через отверстия в пере лопатки, и перепускное устройство. Камера сгорания выполнена с межтрубным пространством между внутренним, наружным корпусом и кольцевой жаровой трубой с фронтовыми устройствами. Вход фронтового устройства кольцевой жаровой трубы соединен с проточной частью компрессора последовательно от компрессора через кольцевой сегмент лопаточного диффузора, выход которого соединен с входом пневмопровода - канального патрубка, выход которого соединен с входом в третью внутреннюю полость охлаждаемой лопатки соплового аппарата, один из выходов из которой соединен с входом во фронтовое устройство жаровой трубы. Кроме того, имеются еще два выхода из третьей внутренней полости. Один из выходов через межтрубное пространство камеры сгорания и кольцевую полость-ресивер соединен с входом в первую внутреннюю полость лопатки. Второй выход через окно в разделительной стенке соединен с четвертой внутренней полостью лопатки соплового аппарата. В сопловом аппарате имеются, по крайней мере, одна или несколько лопаток, у которых третья внутренняя полость имеет четвертый выход, соединяющий ее через окно в разделительной стенке со второй внутренней полостью. В этих лопатках располагается перепускное устройство, имеющее кинематическую связь с клапаном, расположенным на входе в топливную форсунку соединенного с этой лопаткой фронтового устройства. Вторая полость этих лопаток соединена со второй полостью лопатки, не имеющей перепускного устройства. Изобретение обеспечивает на различных режимах эффективную работу камеры сгорания газотурбинного двигателя и системы охлаждения высокотемпературной газовой турбины. 5 з.п. ф-лы, 11 ил.

Газотурбинная установка содержит компрессор, выполненный с возможностью приема и сжатия рабочей текучей среды, камеру сгорания, турбину. Камера сгорания выполнена с возможностью приема сжатой рабочей текучей среды из компрессора и топлива и с возможностью сжигания смеси сжатой рабочей текучей среды и топлива с образованием выхлопного газа. Турбина имеет первую секцию и вторую секцию и выполнена с возможностью приема выхлопного газа из камеры сгорания и использования его для вращения вала. Между первой и второй секциями турбины расположено кольцевое устройство сгорания для вторичного подогрева, которое содержит лопатку-форсунку для предварительного смешивания, выполненную с возможностью смешивания воздуха и топлива с созданием воздушно-топливной смеси и с возможностью введения этой смеси в выхлопной газ, поступающий из первой секции турбины. Изобретение направлено на повышение кпд установки за счет дополнительного подогрева и предварительного смешивания топлива и воздуха. 3 н. и 17 з.п. ф-лы, 12 ил.

Компрессорно-турбинный авиационный двигатель с поперечным расположением ступеней газовой турбины включает в себя входное устройство, компрессор, противоточную камеру сгорания, реактивное сопло, редуктор. Газовая турбина расположена поперечно оси двигателя. Камера сгорания расположена по оси двигателя в центре конструкции. Использование поперечного расположения газовой турбины и центральное размещение камеры сгорания позволяют значительно уменьшить массу и длину двигателя за счет уменьшения длины вала и объема корпуса камеры сгорания. Вал двигателя будет необходимо рассчитывать лишь на сжатие от газовых сил, возникающих в компрессоре, а длина вала уменьшится на величину длины турбины пропорционально. 3 ил.

Система для поддержания непрерывной детонационной волны содержит кольцевую камеру сгорания и систему получения нестационарной плазмы. Система получения нестационарной плазмы расположена по отношению к камере сгорания таким образом, чтобы поддерживать вращающуюся детонационную волну путем генерирования высоковольтных импульсов низкой энергии в кольцевой камере сгорания. Система получения нестационарной плазмы включает импульсный генератор для генерирования указанных высоковольтных импульсов низкой энергии, чтобы обеспечить образование нестационарной плазмы, увеличивающей реакционную способность химических частиц компонентов топлива. Изобретение позволяет поддерживать непрерывную, стабильную детонационную волну, которая обеспечивает низкое давление подачи и высокую эффективность сжигания топлива. 2 н. и 16 з. п. ф-лы, 2 ил.

Изобретение относится к энергетике. Газотурбинная система сгорания, при этом газовая турбина содержит компрессор, камеру сгорания для выработки рабочего газа, соединенную для приема сжатого воздуха из компрессора, турбину, соединенную для приема рабочего газа из камеры сгорания. Камера сгорания состоит из единственной трубчатой камеры сгорания или содержит множество трубчатых камер сгорания, расположенных в кольцевой трубчатой конфигурации, причем трубчатая камера сгорания содержит по меньшей мере одну горелку предварительного смешивания. Воспламенение смеси начинается на выпуске горелки предварительного смешивания, а пламя стабилизируется в области выпуска горелки предварительного смешивания посредством области обратного течения. Изобретение позволяет обеспечить стабильное сгорание во всём рабочем диапазоне, а также позволяет понизить выбросы CO. 2 н. и 22 з.п. ф-лы, 11 ил.
Наверх