Способ дистанционного определения горизонтальной составляющей магнитной индукции горных пород в древние эпохи

Изобретение относится к физике Земли, в частности к палеомагнетизму. Сущность: с помощью радиолокационной установки с близко расположенными излучающим и приемным устройствами, содержащими в своем составе горизонтальные магнитные диполи, импульсный генератор магнитных моментов в излучающем устройстве и Squid-магнитометр на основе эффекта Джозефсона в приемном, измеряют угол поворота плоскости поляризации сигнала ϕ на его пути до отражающей границы в подошве изучаемого горизонта или в нем и обратно в среде с магнитной индукцией Bz, совпадающей с направлением распространения сигнала. После разнесения излучающего и приемного устройств на достаточно большое расстояние, при котором сохраняется возможность регистрации отраженных сигналов от нужной границы раздела, намагничивания в постоянном магнитном поле в горизонтальном направлении в среднем на ΔВн с помощью горизонтального магнитного диполя области исследуемого горизонта перемещают приемное устройство по окружности с сохранением взаимной ориентации излучающего и приемного магнитных диполей и одновременно измеряют угол поворота плоскости поляризации. Находят такое положение последнего, при котором угол поворота плоскости поляризации сигнала будет максимальным. Это означает совпадение радиуса, на котором находится приемное устройство, с направлением на полюс во время изучаемой эпохи, если при другом значении ΔВн приращение угла поворота плоскости поляризации сигнала будет пропорционально приращению подмагничивающего поля.

 

Изобретение относится к физике Земли, в частности к палеомагнетизму.

Известен способ определения горизонтальных составляющих остаточной намагниченности и магнитной индукции горных пород в древние эпохи, включающий отбор ориентированных образцов горных пород из обнажений и горных выработок и определение в лабораторных условиях их указанных характеристик [1]. Прототип.

Недостатком известного способа является необходимость не всегда технически возможной трудоемкой операции - отбора ориентированных образцов, особенно при изучении значительных по площади закрытых территорий.

Техническая задача заключается в том, чтобы величину горизонтальной составляющей магнитной индукции горных пород в исследуемую эпоху определять дистанционно, с поверхности земли.

Предлагается способ дистанционного определения горизонтальной составляющей магнитной индукции горных пород в древние эпохи, включающий определение горизонтальной составляющей остаточной намагниченности и магнитной индукции в горных породах изучаемого горизонта, заключающийся в том, что с помощью радиолокационной установки с близко расположенными излучающим и приемным устройствами, содержащими в своем составе горизонтальные магнитные диполи, импульсный генератор магнитных моментов в излучающем устройстве и Squid-магнитометр на основе эффекта Джозефсона в приемном, измеряют угол поворота плоскости поляризации сигнала на его пути до отражающей границы в подошве изучаемого горизонта или в нем и обратно в среде с магнитной индукцией Bz, совпадающей с направлением распространения сигнала, предположительно как результат эффекта Фарадея. Далее, после разнесения излучающего и приемного устройств на достаточно большое расстояние, при котором сохраняется возможность регистрации отраженных сигналов от нужной границы раздела, намагничивания в постоянном магнитном поле в горизонтальном направлении в среднем на ΔВн с помощью горизонтального магнитного диполя области исследуемого горизонта, содержащей путь сигнала, перемещая приемное устройство по окружности с сохранением взаимной ориентации излучающего и приемного магнитных диполей и одновременно измеряя угол поворота плоскости поляризации, находят такое положение последнего, при котором угол поворота плоскости поляризации будет максимальным, что означает совпадение радиуса, на котором находится приемное устройство, с направлением на полюс во время изучаемой эпохи, если при другом значении ΔВн приращение угла поворота плоскости поляризации сигнала будет пропорционально приращению подмагничивающего поля. Далее область исследуемого горизонта, содержащую путь сигнала в найденном направлении на геомагнитный полюс изучаемой эпохи, последовательно, в несколько этапов, во все более сильном постоянном магнитном поле намагничивают в горизонтальном направлении, обратном предполагаемому, с помощью горизонтального магнитного диполя, одновременно измеряя угол поворота плоскости поляризации, до момента, когда угол поворота плоскости поляризации сигнала не станет равным нулю или минимальным, если имеются и другие механизмы поляризации сигнала, что означает совпадение средней величины образуемой подмагничивающим полем магнитной индукции ΔВн магнитной индукции Вн в изучаемом горизонте в древнюю эпоху, если при разных значениях ΔВн приращения угла поворота плоскости поляризации сигнала будут пропорциональны приращениям подмагничивающего поля.

Введенный в формулу изобретения такой существенный признак, что измеряется угол поворота плоскости поляризации при вертикальном распространении сигнала в изучаемом горизонте, позволяет оценить вклад в общую величину угла поворота вертикальной составляющей магнитной индукции в изучаемую эпоху.

Введенный в формулу изобретения такой существенный признак, что намагничивается область, содержащая траекторию сигнала, в постоянном магнитном поле в горизонтальном направлении, позволяет увеличить вклад горизонтальной составляющей магнитной индукции на величину угла поворота плоскости поляризации сигнала.

Введенный в формулу изобретения такой существенный признак, что при перемещении приемного устройства по окружности с одновременными повторными измерениями угла поворота находится такое его положение, когда угол поворота плоскости поляризации максимален, позволяет определить положение горизонтальной составляющей магнитной индукции в исследуемую эпоху и, следовательно, направление на геомагнитый полюс в то время.

Введенный в формулу изобретения такой существенный признак, что при другом значении ΔВн приращение угла поворота плоскости поляризации сигнала будет пропорционально приращению подмагничивающего поля, позволяет подтвердить совпадение найденного положения горизонтальной составляющей магнитной индукции в изучаемом горизонте с направлением на геомагнитный полюс в изучаемую эпоху.

Введенный в формулу изобретения такой существенный признак, что последовательно, в несколько этапов, во все более сильном постоянном магнитном поле намагничивается область, содержащая траекторию сигнала, в горизонтальном, но противоположном предполагаемому, направлении с одновременными повторными измерениями угла поворота, позволяет определить горизонтальную составляющую магнитной индукции в изучаемом горизонте по моменту полной компенсации ее подмагничивающим полем, наступающей при равенстве нулю угла поворота плоскости поляризации сигнала или минимуму, если существуют и иные механизмы поляризации сигнала.

Введенный в формулу изобретения такой существенный признак, что если при изменении подмагничивающего поля приращения угла поворота плоскости поляризации сигнала будут пропорциональны приращениям подмагничивающего поля, то это позволяет подтвердить правильность определения величины горизонтальной составляющей магнитной индукции в изучаемом горизонте в изучаемую эпоху.

Способ осуществляется следующим образом. С помощью радиолокационной установки с близко расположенными излучающим и приемным устройствами, содержащими в своем составе горизонтальные магнитные диполи, импульсный генератор магнитных моментов в излучающем устройстве и Squid-магнитометр на основе эффекта Джозефсона в приемном, измеряют угол поворота плоскости поляризации сигнала на его пути до отражающей границы в подошве изучаемого горизонта или в нем и обратно в среде с магнитной индукцией Bz, совпадающей с направлением распространения сигнала. Это позволяет выделить из общего угла поворота плоскости поляризации вклад за счет эффекта Фарадея на подмагниченной нормальной к отражающей границе проекции пути сигнала и примерно оценить соответствие оставшейся части угла поворота эффекту Фарадея за счет горизонтальной составляющей магнитной индукции. Далее после разнесения излучающего и приемного устройств на достаточно большое расстояние, при котором сохраняется возможность регистрации отраженных сигналов от нужной границы раздела, намагничивания в постоянном магнитном поле в горизонтальном направлении в среднем на ΔВн с помощью горизонтального магнитного диполя области исследуемого горизонта, содержащей путь сигнала, перемещая приемное устройство по окружности с сохранением взаимной ориентации излучающего и приемного магнитных диполей и одновременно измеряя угол поворота плоскости поляризации, находят положение приемного устройства, при котором угол поворота плоскости поляризации будет максимальным, что означает совпадение радиуса, на котором находится приемное устройство, с направлением на полюс во время изучаемой эпохи, если при другом значении ΔВн приращение угла поворота плоскости поляризации сигнала будет пропорционально приращению подмагничивающего поля. Это главное, но отчасти этот результат можно проконтролировать исключением вклада вертикальной составляющей магнитной индукции (см. выше) и по положению приемного устройства, когда угол поворота будет минимален, тогда радиус, на котором находится приемное устройство, окажется на нормали к магнитному меридиану в изучаемую эпоху и угол между указанными положениями радиуса должен составлять 90°. Далее последовательно, в несколько этапов, во все более сильном постоянном магнитном поле намагничивают в горизонтальном направлении с помощью горизонтального магнитного диполя область исследуемого горизонта, содержащую путь сигнала, и одновременно измеряют угол поворота плоскости поляризации до момента, при котором угол поворота плоскости поляризации будет равным нулю или минимальным, если имеют место и иные механизмы поляризации сигнала, что означает совпадение по модулю величины горизонтальной составляющей магнитной индукции при данном подмагничивающем поле магнитной индукции в изучаемую эпоху, если при повторных измерениях приращения угла поворота плоскости поляризации сигнала будут пропорциональны приращениям подмагничивающего поля.

Преимуществом способа является возможность определения горизонтальной составляющей магнитной индукции в изучаемую эпоху дистанционно, с поверхности Земли.

Источник информации

1. Справочник геофизика. чивторазведка. М.: Недра, 1980. - 367 с. (см. главу X, с.210).

Способ дистанционного определения горизонтальной составляющей магнитной индукции горных пород в древние эпохи, включающий определение горизонтальной составляющей остаточной намагниченности и магнитной индукции в горных породах изучаемого горизонта, отличающийся тем, что с помощью радиолокационной установки с близко расположенными излучающим и приемным устройствами, содержащими в своем составе горизонтальные магнитные диполи, импульсный генератор магнитных моментов в излучающем устройстве и Squid-магнитометр на основе эффекта Джозефсона в приемном, измеряют угол поворота плоскости поляризации сигнала на его пути до отражающей границы в подошве изучаемого горизонта или в нем и обратно в среде с магнитной индукцией Bz, совпадающей с направлением распространения сигнала, предположительно как результат эффекта Фарадея, далее, после разнесения излучающего и приемного устройств на достаточно большое расстояние, при котором сохраняется возможность регистрации отраженных сигналов от нужной границы раздела, намагничивания в постоянном магнитном поле в горизонтальном направлении в среднем на ΔВн с помощью горизонтального магнитного диполя области исследуемого горизонта, содержащей путь сигнала, перемещая приемное устройство по окружности с сохранением взаимной ориентации излучающего и приемного магнитных диполей и одновременно измеряя угол поворота плоскости поляризации, находят такое положение последнего, при котором угол поворота плоскости поляризации будет максимальным, что означает совпадение радиуса, на котором находится приемное устройство, с направлением на полюс во время изучаемой эпохи, если при другом значении ΔВн приращение угла поворота плоскости поляризации сигнала будет пропорционально приращению подмагничивающего поля, далее, область исследуемого горизонта, содержащую путь сигнала в найденном направлении на геомагнитный полюс изучаемой эпохи, последовательно, в несколько этапов, во все более сильном постоянном магнитном поле намагничивают в горизонтальном направлении, обратном предполагаемому, с помощью горизонтального магнитного диполя, одновременно измеряя угол поворота плоскости поляризации, до момента, когда угол поворота плоскости поляризации сигнала не станет равным нулю или минимальным, если имеются и другие механизмы поляризации сигнала, что означает совпадение средней величины образуемой подмагничивающим полем магнитной индукции ΔВн магнитной индукции Вн в изучаемом горизонте в древнюю эпоху, если при разных значениях ΔВн приращения угла поворота плоскости поляризации сигнала будут пропорциональны приращениям подмагничивающего поля.



 

Похожие патенты:
Изобретение относится к физике Земли, в частности к палеомагнетизму. .
Изобретение относится к физике Земли, в частности к палеомагнетизму. .

Изобретение относится к области инклинометрии буровых скважин и может быть использовано в нефте- и газопромысловой геофизике для определения пространственного положения ствола скважины: зенитного угла, азимута и угла отклонителя.

Изобретение относится к области измерительной техники и может быть использовано в магниторазведке для поиска полезных ископаемых, в области космических исследований для измерения магнитного поля околоземного пространства и магнитного поля планет, в магнитной навигации для определения местоположения судна и т.д.

Изобретение относится к измерительной технике и может быть использовано в магниторазведке для поиска полезных ископаемых, в области космических исследований для измерения магнитного поля околоземного пространства и магнитного поля планет, в магнитной навигации для определения скорости и местоположения судна и т.д.

Изобретение относится к измерительной технике и может быть использовано в магниторазведке для поиска полезных ископаемых, в области космических исследований для измерения магнитного поля околоземного пространства и магнитного поля планет, в магнитной навигации для определения скорости и местоположения судна и т.д.

Изобретение относится к области измерительной техники и может быть использовано в магниторазведке для поиска полезных ископаемых, в области космических исследований для измерения магнитного поля околоземного пространства и магнитного поля планет, в магнитной навигации для определения скорости и местоположения судна и т.д.

Изобретение относится к области астрофизических измерений и предназначено для исследования структуры и динамики магнитных полей в атмосфере Солнца. .

Изобретение относится к области космической физики, в частности к способам и устройствам определения направления вектора индукции магнитного поля в ионосфере Земли.

Изобретение относится к магнитной геологоразведке и может быть использовано при разведке железорудных месторождений. .
Изобретение относится к магнитометрии и предназначено для изучения строения земной коры по магнитному полю
Изобретение относится к инклинометрии скважин в процессе бурения

Изобретение относится к области морской магнитной съемки и может быть использовано при проведении морской магниторазведки

Изобретение относится к области магниторазведки и предназначено для обнаружения, локализации и классификации локальных магнитных аномалий (ЛМА) при помощи установленных на подвижном носителе бортовых средств магнитных измерений, в частности магнитометров

Изобретение относится к области геофизики и может быть использовано для определения стационарного геомагнитного поля при проведении морской магнитной съемки
Изобретение относится к области геомагнетизма и может быть использовано для выделения индукции аномального магнитного поля Земли (МПЗ)

Изобретение относится к технике размагничивания судов и касается вопросов настройки многодатчиковых систем управления магнитным полем, обеспечивающих минимизацию эксплуатационных изменений внешнего магнитного поля судна

Изобретение относится к области геофизики и может быть использовано для комплексной оценки эффекта геомагнитной псевдобури - эффекта возникновения эквивалента геомагнитной вариации, наблюдаемого в объеме существования объекта в среде невозмущенного анизотропного геомагнитного поля, при условии ненулевой угловой или линейной скорости этого объекта. Сущность: измеряют вариации геомагнитного поля, геодезические координаты текущего местоположения объекта, высоту объекта над уровнем моря, обладающего ненулевой угловой или линейной скоростью; время, затраченное на передвижение объекта по известной траектории, и общую протяженность этой траектории. Затем рассчитывают комплекс параметров геомагнитной псевдобури: амплитуду геомагнитной псевдобури, скорость нарастания (спада) силовой характеристики невозмущенного геомагнитного поля с течением времени, частоту геомагнитной псевдобури, потенциальность геомагнитной псевдобури. Результаты вычисленных физических параметров сравнивают с показаниями магнитометра и ранжировкой индексов геомагнитной активности. В случае их совпадения, судят о природе возникновения геомагнитных вариаций в объеме существования объекта, обладающего ненулевой угловой или линейной скоростью, а также о принадлежности амплитуды геомагнитной псевдобури одному из установленных табличных интервалов. Далее в соответствии со специальной таблицей определяют индекс геомагнитной псевдобури. Технический результат: повышение точности идентификации составляющих геомагнитных вариаций естественной природы происхождения. 3 табл.

Изобретение относится к способам обработки геомагнитных данных. Сущность: измеряют геомагнитное поле с подвижных носителей по сети рядовых и плановых секущих маршрутов. Исправляют измеренные значения геомагнитного поля за девиацию носителя и разновысотность наблюдений. При этом на ближайшей к площади съемки точке устанавливают магнито-вариационную станцию и измеряют вариации геомагнитного поля во время съемки. По данным магнито-вариационной станции на съемочных маршрутах строят карту вариаций геомагнитного поля по времени прохождения. По экстремальным значениям вариаций геомагнитного поля на полученной карте проводят дополнительные секущие маршруты. Увязку наблюдений проводят по рядовым, плановым и дополнительным секущим маршрутам. Также оценивают поправки за вариации. По увязанным значениям строят цифровую модель карты геомагнитного поля. Полученную цифровую модель сглаживают по ортогональным к рядовым искусственным секущим маршрутам до исключения случайных отклонений. Полученные случайные отклонения рассматривают в качестве остаточных невязок вдоль рядовых маршрутов. Остаточные невязки сглаживают вдоль рядовых маршрутов и выделяют закономерную составляющую, которую принимают в качестве оценки добавочных вариаций на рядовых маршрутах. Вычисляют суммарную вариацию по добавочным вариациям и вариациям, полученным в результате увязки рядовых маршрутов с реальными секущими. Суммарную поправку используют в качестве нулевого приближения для поправок за вариации на рядовых и реальных секущих маршрутах при повторной увязке или вводят в наблюдения на рядовых маршрутах, к которым привязывают поле на реальных секущих. Если ошибка увязки не превышает заданную величину, то в качестве поправок за вариации используют суммарные поправки, которые учитывают в измеренных на профилях значениях геомагнитного поля. Технический результат: обеспечение надежного учета вариаций геомагнитного поля.

Изобретение относится к измерительной технике. Технический результат: обеспечение мобильности и автономности измерения естественных электромагнитных полей с контролем частот спектра Земля-ионосфера без использования сторонних источников питания. Сущность: измеритель содержит магнитную рамочную антенну, N активных приемных модулей с 1-1 по 1-N, суммирующий блок, первый включатель на два положения включения, блок переключателей, N полосовых фильтров, аттенюатор, фазовращатель, индикатор частот 50 Гц, блок индикаторов и анализатор спектра. 6 з.п. ф-лы, 7 ил.
Наверх