Способ контроля состояния режущих кромок сборных многолезвийных инструментов

Изобретение относится к области обработки металлов резанием, определению допустимой скорости резания при работе на станках с ЧПУ. Способ включает предварительный пробный проход инструмента по стальной заготовке с преобразованием аналогового сигнала термоЭДС каждой режущей кромки в цифровой с помощью аналого-цифрового преобразователя с частотой дискретизации не менее 1 кГц и сравнение значений термоЭДС в цифровом виде с выделением максимального значения термоЭДС. Для повышения производительности и эффективности обработки перед ее началом определяют значения термоЭДС всех режущих кромок инструмента, вычисляют среднеарифметическое значение термоЭДС, по полученному значению термоЭДС определяют допустимую скорость резания, по которой устанавливают стойкость режущей кромки с максимальным значением термоЭДС. Затем по отношению заданной стойкости всего комплекта режущих кромок инструмента к стойкости режущей кромки с максимальным значением термоЭДС в этом комплекте определяют коэффициент отклонения минимальной стойкости от заданной, при значении которого больше допустимого производят корректировку допустимой скорости резания. 2 ил., 2 табл.

 

Изобретение относится к обработке металлов резанием и может быть применено для контроля состояния режущих кромок сборных фрез, зенкеров, сверлильных и расточных головок, на основе которого производится определение допустимой скорости резания, обеспечивающей период надежной работы режущих кромок сборного многолезвийного инструмента, в ручном (настроечном) и автоматизированном режимах работы станков с ЧПУ.

Известен способ контроля состояния режущих кромок сборного многолезвийного инструмента, выполненных из одного материала, с помощью вихретокового преобразователя (см. Скворцов А.В., Уколов М.С., Скворцов А.А. Контроль и диагностика режущих инструментов с помощью вихретоковых преобразователей // Станки и инструмент, 2005, 6, с.10-13), предусматривающий в процессе контроля преобразование электрического сигнала каждой режущей кромки в цифровой, по величине которого определяют координаты режущих кромок и предельный износ инструмента.

Недостатком известного способа является то, что он не обеспечивает возможность определения допустимой скорости резания, которая обусловливает производительность и эффективность работы сборного многолезвийного инструмента.

Наиболее близким способом того же назначения к заявленному является способ контроля состояния режущих кромок сборных многолезвийных инструментов (см. патент RU 2203778 С2, В23В 25/06, 05.03.2001), выполненных из одного материала, в процессе многолезвийной обработки, включающий предварительный пробный проход инструмента по стальной заготовке с преобразованием аналогового сигнала термоЭДС каждой режущей кромки в цифровой с помощью аналого-цифрового преобразователя с частотой дискретизации не менее 1 кГц и сравнение значений термоЭДС в цифровом виде с выделением максимального значения термоЭДС, по которому определяют допустимую скорость резания.

Недостатком известного способа является то, что допустимая скорость резания, устанавливаемая по максимальной величине термоЭДС режущей кромки в комплекте зубьев, имеет минимальное значение, которое ограничивает увеличение производительности процесса резания и создает значительный перерасход инструментального материала, который снижает эффективность многолезвийной обработки.

Задача, на решение которой направлено заявленное изобретение, состоит в повышении производительности и эффективности обработки при контроле состояния режущих кромок сборных многолезвийных инструментов.

Техническим результатом, который может быть получен при осуществлении изобретения, является получение информации о состоянии сборного многолезвийного твердосплавного инструмента перед началом его работы и определение допустимой скорости резания по величине среднеарифметического значения термоЭДС всех режущих кромок с учетом разброса режущих свойств твердосплавных пластин, собранных в одном комплекте сборного многолезвийного инструмента.

Указанный технический результат достигается тем, что в заявленном способе контроля состояния режущих кромок сборных многолезвийных инструментов, выполненных из одного материала, в процессе многолезвийной обработки, включающем предварительный пробный проход инструмента по стальной заготовке с преобразованием аналогового сигнала термоЭДС каждой режущей кромки в цифровой с помощью аналого-цифрового преобразователя с частотой дискретизации не менее 1 кГц и сравнение значений термоЭДС в цифровом виде с выделением максимального значения термоЭДС, перед началом обработки определяют значения термоЭДС всех режущих кромок инструмента, вычисляют среднеарифметическое значение термоЭДС, по полученному значению термоЭДС определяют допустимую скорость резания, по которой устанавливают стойкость режущей кромки с максимальным значением термоЭДС, и по отношению заданной стойкости всего комплекта режущих кромок инструмента к стойкости режущей кромки с максимальным значением термоЭДС в этом комплекте определяют коэффициент отклонения минимальной стойкости от заданной Ко, при значении которого больше допустимого производят корректировку допустимой скорости резания.

Впервые предложено для определения допустимой скорости резания учитывать значения термоЭДС всех режущих кромок сборного многолезвийного твердосплавного инструмента. Вычисленное с помощью комплекса программного обеспечения ЭВМ среднеарифметическое значение термоЭДС всех режущих кромок позволяет назначить допустимую скорость резания с учетом разброса режущих свойств твердосплавных пластин, собранных в одном комплекте сборного многолезвийного инструмента.

Введен новый параметр - коэффициент отклонения минимальной стойкости от заданной Kо, определяемый как отношение заданной стойкости всего комплекта режущих кромок Тзад к стойкости режущей кромки с максимальным значением термоЭДС в этом комплекте Tmin. Установлено численное значение коэффициента Kо, обеспечивающее надежную работу сборного многолезвийного инструмента на станке с ЧПУ, при превышении которого производится корректировка допустимой скорости резания.

Наличие указанных отличительных признаков обеспечивает повышение производительности и эффективности обработки при контроле состояния режущих кромок сборных многолезвийных инструментов.

На фиг.1 дана схема, иллюстрирующая осуществление способа контроля на примере фрезерования стальной заготовки восьмизубой торцовой фрезой. На фиг.2 изображена осциллограмма термоЭДС режущих кромок за один оборот фрезы.

Способ осуществляется следующим образом. Под управлением комплекса программного обеспечения ЭВМ типа IBM-486 система ЧПУ производит позиционирование фрезы с режущими кромками из твердого сплава 1 относительно заготовки 2 на указанных режимах и осуществляет предварительный пробный проход фрезы 1 по заготовке 2. АЦП преобразует снимаемый токосъемником 3 с каждой режущей кромки фрезы 1 сигнал термоЭДС в 8-разрядный цифровой код с частотой дискретизации не менее 1 кГц, который поступает в ЭВМ и запоминается в ее ОЗУ.

Одновременно с этим в ОЗУ запоминаются моменты времени, в которые поступает сигнал с датчика 4 оборотной метки (герметичный контакт в паре с магнитом, оптронная пара и др.). По истечении установленного времени после совершения фрезой 1 одного или нескольких оборотов она отводится по команде ЭВМ системой ЧПУ и ЭВМ приступает к анализу полученных осциллограмм сигнала термоЭДС.

Под управлением специальных алгоритмов программного обеспечения ЭВМ производит просмотр данных в ОЗУ с целью нахождения участка, представляющего динамику изменения термоЭДС отдельных режущих кромок за 1 оборот фрезы (фиг.2). Сигнал оборотной метки (черная полоса в центре) используется для идентификации на осциллограмме термоЭДС отдельных режущих кромок, пронумерованных от 1' до 8'.

Перед началом обработки с помощью комплекса программного обеспечения ЭВМ определяет величины термоЭДС всех режущих кромок из набора фрезы, выделяет и запоминает максимальное значение термоЭДС и затем вычисляет среднеарифметическое значение термоЭДС режущих кромок.

По полученному среднеарифметическому значению термоЭДС рассчитывается допустимая скорость резания по известному способу (см. патент RU 2203778) с использованием формулы (1):

где Ec - среднеарифметическая величина термоЭДС всех режущих кромок из набора фрезы, выявленная аппаратным способом в условиях пробного прохода фрезы по стальной заготовке при полной ширине симметричного фрезерования, мВ;

Dф - диаметр фрезы, мм;

Т - стойкость фрезы, мин;

t - глубина фрезерования, мм;

Sz - подача на зуб фрезы, мм/зуб;

B - ширина фрезерования, мм;

qV, m, xV, yV, zV - показатели степени при диаметре фрезы Dф, стойкости фрезы Т, глубине фрезерования t, подаче на зуб Sz и ширине фрезерования В соответственно.

Для режущей кромки с максимальным значением термоЭДС по рассчитанной скорости резания определяется ее стойкость путем обратного пересчета по формуле (2):

где Emax - максимальная величина термоЭДС твердосплавной режущей кромки из набора фрезы, мВ.

Далее определяется коэффициент отклонения минимальной стойкости от заданной Kо как отношение заданной стойкости всего комплекта режущих кромок Тзад к минимальной стойкости режущей кромки в этом комплекте Tmin по формуле (3):

В случае если численное значение коэффициента Kо удовлетворяет заданному условию Ko≤Kд, то в систему ЧПУ выдается рассчитанное значение допустимой скорости резания и производится обработка детали на указанном режиме.

В случае если численное значение коэффициента Kо превышает допустимое значение (Kо>Kд), то система ЧПУ уменьшает величину допустимой скорости резания на 3%, производит расчет новых значений Tmin и Kо и сравнивает вновь полученное значение Kо с допустимым. Цикл продолжается до тех пор, пока значение Kо не будет удовлетворять заданному условию.

Численное значение коэффициента Kд=1,5 может быть принято как допустимое для обеспечения вероятности безотказной работы фрезы в течение заданного периода стойкости p(Tзад)=0,9...0,95 на станке с ЧПУ.

Для экспериментальной проверки предлагаемого способа и сравнения данных с прототипом стойкостным испытаниям были подвергнуты две восьмизубые торцовые фрезы диаметром 125 мм, оснащенные пятигранными твердосплавными пластинами марки Т15К6, при обработке стали 20Х. При исследовании задавались следующие параметры обработки: стойкость фрезы Tзад=120 мин, подача на зуб Sz=0,15 мм/зуб, глубина фрезерования t=2 мм, ширина фрезерования В=100 мм. Значения термоЭДС режущих кромок в наборе фрезы определялись в условиях пробного прохода фрезы по заготовке. Условием надежной работы фрезы принималось отсутствие вибраций, превышающих допустимый уровень, и сохранение заданной стойкости 120 минут. Дополнительно оценивалась величина коэффициента недоиспользования ресурса инструмента как отношение максимального значения стойкости режущей кромки в комплекте фрезы Tmax к заданной стойкости всего комплекта режущих кромок Тзад по формуле (4):

Результаты экспериментальной проверки предлагаемого способа и прототипа приведены в таблицах 1 и 2 соответственно.

Таблица 1
Определение допустимой скорости резания по предлагаемому способу
Шаг расчета№ режущей кромкиТермоЭДС режущей кромки E, мВСтойкость режущей кромки T, минKоKнСкорость резания V, м/мин
Параметры расчета: Е=Еср=8,94 мВ
17,9189
210,269
311,342
48,0181
158,01812,891,65173,8
68,7133
79,690
87,8198
Параметры расчета: V2=0,97V1
17,9222
210,281
311,349
48,0213
258,02132,461,94168,6
68,7156
79,6105
87,8232
Параметры расчета: V3=0,94V1
17,9260
210,294
311,357
48,0249
358,02492,12,27163,4
68,7183
79,6123
87,8272
Параметры расчета: V4=0,91V1
17,9306
210,2111
311,367
48,0293
458,02931,782,67158,2
68,7215
79,6145
87,8320
Параметры расчета: V5=0,97V1
17,9372
210,2135
311,382
48,0356
558,03561,473,24153
68,7262
79,6176
87,8389

Таблица 2
Определение допустимой скорости резания по прототипу (пат. №2203778)
№ режущей кромкиТермоЭДС режущей кромки E, мВСтойкость режущей кромки T, минСкорость резания V, м/мин
Параметры обработки: Tзад=120 мин, Е=Emax=11,3 мВ
17,9547
210,2198
311,3120
48,0523
58,05234,7140,6
68,7385
79,6259
87,8571

Сравнительный анализ данных таблиц 1 и 2 дает основание утверждать, что определение допустимой скорости резания по предлагаемому способу позволило увеличить расчетное значение допустимой скорости резания на 9% (с 140,6 м/мин до 153 м/мин) и уменьшить коэффициент недоиспользования ресурса инструмента на 47% (с 4,7 до 3,24).

Использование предлагаемого способа позволяет повысить производительность и эффективность многолезвийной обработки за счет увеличения допустимой скорости резания и более полного использования ресурса режущих свойств сборного многолезвийного твердосплавного инструмента.

Данный способ не регламентирует номенклатуры марок применяемых твердосплавных режущих пластин и предназначен для использования в металлообработке для автоматического или ручного контроля состояния режущих кромок сборных многолезвийных инструментов, на основе которого производится определение допустимой скорости резания на фрезерных станках с ЧПУ, ОЦ (диалоговый режим подготовки управляющих программ).

Способ контроля состояния режущих кромок сборных многолезвийных инструментов, выполненных из одного материала, в процессе многолезвийной обработки, включающий предварительный пробный проход инструмента по стальной заготовке с преобразованием аналогового сигнала термоэлектрической движущей силы (термоЭДС) каждой режущей кромки в цифровой с помощью аналого-цифрового преобразователя с частотой дискретизации не менее 1 кГц и сравнение значений термоЭДС в цифровом виде с выделением максимального значения термоЭДС, отличающийся тем, что значения термоЭДС всех режущих кромок инструмента определяют перед началом обработки, затем вычисляют среднеарифметическое значение термоЭДС, по полученному значению термоЭДС определяют допустимую скорость резания, по которой устанавливают стойкость режущей кромки с максимальным значением термоЭДС, и по отношению заданной стойкости всего комплекта режущих кромок инструмента к стойкости режущей кромки с максимальным значением термоЭДС в этом комплекте определяют коэффициент отклонения минимальной стойкости от заданной, при значении которого больше допустимого, производят корректировку допустимой скорости резания.



 

Похожие патенты:

Изобретение относится к области обработки материалов на станках-автоматах и автоматических линиях. .

Изобретение относится к обработке металлов и токопроводящих материалов резанием, обработке изделий по методу автоматического получения размеров на универсальных ручных станках, станках полуавтоматах и автоматах, станках с ЧПУ резцами, оснащенными сменными многогранными пластинами без отверстия.

Изобретение относится к обработке металлов и токопроводящих материалов резанием и может быть использовано на универсальных станках с ручным управлением, станках-полуавтоматах и автоматах, а также на станках с ЧПУ.

Изобретение относится к обработке металлов и токопроводящих материалов резанием и может быть использовано на станках с ручным управлением, станках-полуавтоматах и автоматах, а также на станках с ЧПУ.

Изобретение относится к обработке металлов и токопроводящих материалов резанием и может найти применение при исследовании их обрабатываемости, назначении режимов резания и проектировании режущего инструмента.

Изобретение относится к обработке металлов и токопроводящих материалов резанием и может быть использовано при обработке изделий по методу автоматического получения размеров на предварительно настроенных универсальных ручных станках, станках-полуавтоматах и автоматах (встроенных или не встроенных в автоматические линии), на станках с ЧПУ, а также при исследовании стойкости режущего инструмента.

Изобретение относится к обработке металлов и токопроводящих материалов резанием и может быть использовано при обработке изделий по методу автоматического получения размеров на универсальных ручных станках, станках-полуавтоматах и автоматах, на станках с ЧПУ, а также при исследовании стойкости режущего инструмента.

Изобретение относится к станкостроению Целью изобретения является повышение качества конструкции за счет обеспечения отвода изделия в направле-. .

Изобретение относится к измерительной технике и позволяет повысить точность и производительность измерений. .

Изобретение относится к области обработки материалов резанием, обработке на станках с ЧПУ и автоматических линиях

Изобретение относится к области обработки материалов резанием и может быть использовано для измерения составляющих силы резания

Изобретение относится к машиностроению, в частности к области обработки металлов резанием, к контролю износа и остаточной стойкости режущего инструмента, и может применяться в системах ЧПУ станка

Изобретение относится к области станкостроения и может быть использовано в автоматизированных системах технологического оборудования и в измерительной технике

Изобретение относится к области металлообрабатывающей промышленности и может быть использовано для определения износа режущего инструмента станков с ЧПУ, функционирующих в условиях автоматизированного производства

Изобретение относится к области обработки металлов резанием, в частности, сборным многолезвийным инструментом. С момента начала обработки непрерывно измеряют значение термоЭДС каждой режущей кромки и производят непрерывное сравнение текущих значений термоЭДС каждой режущей кромки с установленным предельным значением термоЭДС. Фиксируют значение термоЭДС режущей кромки со значением термоЭДС ниже или равным предельному и по определенной зависимости определяют коэффициент изношенности инструмента Ки. При 0,1<Ки<0,25 вводят коррекцию режима обработки, а при Ки≥0,25 осуществляют замену инструмента. Обеспечивается оперативный контроль состояния каждой режущей кромки твердосплавного инструмента. 8 ил., 2 табл.

Изобретение относится к области металлообработки на станках с ЧПУ и может быть использовано для контроля износа зубьев фрез в радиальном и осевом направлениях. Способ включает установку на станке калиброванного щупа, имеющего две плоские поверхности, перпендикулярные направлению измерения износа и на каждой из которых выполнены выступы с кромкой, параллельной соответствующей плоской поверхности калиброванного щупа. Фрезу посредством рабочего органа станка поочередно перемещают в позиции для измерения соответственно радиального и осевого износа, в которых ось вращения фрезы и кромку соответствующего выступа располагают в одной плоскости, перпендикулярной соответствующей плоской поверхности калиброванного щупа, и перемещают фрезу перпендикулярно этой поверхности до момента первого касания зубьев фрезы с кромкой выступа, при этом фиксируют первую координату рабочего органа станка и начинают отсчет количества касаний зубьев фрезы с кромкой выступа за оборот фрезы, а в момент, когда количество указанных касаний станет равным числу зубьев фрезы, фиксируют вторую координату рабочего органа станка, при этом соответствующий износ зубьев фрезы определяют по разности между зафиксированными первой и второй координатами рабочего органа станка. Использование изобретения позволяет повысить точность определения износа фрез. 3 ил.

Изобретение относится к станкостроению и может быть использовано при проведении исследований и испытаний на жесткость металлообрабатывающих станков с ЧПУ. Осуществляют взаимную установку подвижного стола станка относительно оправки, закрепленной в его шпинделе, с их контактом через датчики силы, установленные по трем взаимно перпендикулярным координатным осям на столе, и шаром в точке с координатами, соответствующими действию силы резания. Создают нагрузку между столом станка и шпинделем путем их согласованного программного перемещения на заданную величину в сторону взаимного сближения с контролем их относительного перемещения, при этом измеряют силы, действующие на шар по упомянутым координатным осям, а фактические значения жесткости станка в направлении упомянутых координатных осей определяют на основании отношений измеренных сил к соответствующим деформациям станка. Использование изобретения позволяет автоматизировать процесс определения жесткости станка и повысить точность измерений за счет их проведения при напряженно-деформированном состоянии конструкции станка. 3 ил.
Наверх