Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу

Изобретение относится к области изготовления полупроводниковых изделий (ППИ) и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки. Сущность изобретения: способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу включает нанесение алюминия и олова на паяемые поверхности соответственно кристалла и корпуса и пайку к основанию корпуса. Между кристаллом и корпусом размещают фольгу из цинка, а пайку проводят при температуре 382-419°С. Техническим результатом изобретения является: исключение использования свинца при пайке, снижение себестоимости производства ППИ, повышение надежности паяных соединений, снижение трудоемкости изготовления ППИ. 2 ил.

 

Изобретение относится к области изготовления полупроводниковых изделий (ППИ) и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки.

Директива Европейского Союза RoHS (Restriction of Hazardous Substances) ограничивает использование шести экологически опасных материалов, в том числе и свинца, в новом электрическом и электронном оборудовании после 1 июля 2006 года. Свинец (Pb) - один из опаснейших материалов, использование которых регулируется RoHS.

Разработка способов сборки ППИ методом пайки припоями без свинца в настоящее время является основной экологической проблемой микроэлектроники. На решение этой актуальной задачи направлены усилия всех специалистов, работающих в области полупроводниковой микроэлектроники.

Существуют различные способы пайки полупроводниковых кристаллов к корпусам ППИ.

Известен способ [1] пайки полупроводникового кристалла к корпусу, по которому на паяемую сторону кристалла наносят электролитическое покрытие из сплава никель-олово, а между кристаллом и никелированным корпусом размещают фольгу припоя ПСр2,5, а пайку проводят в среде водорода или в вакууме.

Недостатками данного способа является использование при пайке припоя, содержащего 92% Pb.

В электронной технике при изготовлении ППИ широко применяется способ контактно-реактивной пайки на основе эвтектики Si-Au [2]. При этом на основание корпуса наносят золотое покрытие толщиной 3-9 мкм, а кремниевый кристалл при заданных режимах присоединяют к основанию корпуса. Возможен и второй вариант, когда золотое покрытие наносят на кристалл и посадочное место корпуса.

Основным недостатком данного способа является использование золота, что приводит к повышению себестоимости производства ППИ. Кроме того, малая толщина паяного шва, особенно для кристаллов площадью свыше 9 мм2, не обеспечивает высокой надежности паяных соединений кристалла с корпусом при жестких режимах функционирования, например при эксплуатации силовых полупроводниковых приборов.

Наиболее близким к заявляемому способу по технической сущности является способ [3] монтажа кристаллов БИС с использованием припоя на основе цинка, по которому на паяемую поверхность кристалла напыляют алюминий, а затем проводят пайку к корпусу, покрытому припоем цинк-алюминий-германий (ЦАГ).

Основным недостатком данного способа является высокая трудоемкость изготовления ППИ, заключающаяся в изготовлении сплава ЦАГ и нанесении его на монтажную площадку корпуса методом электрического взрыва фольги, что требует использования специального дорогостоящего оборудования. Кроме того, при пайке кристалла на сплав ЦАГ необходимо создавать наименьшее удельное давление кристалла на расплав и осуществлять колебания кристалла для разрушения оксидной пленки.

Задача, на решение которой направлено заявляемое техническое решение, - это исключение использования свинца при пайке, снижение себестоимости производства ППИ, повышение надежности паяных соединений, снижение трудоемкости изготовления ППИ.

Эта задача достигается тем, что в способе бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу, заключающемся в нанесении алюминия и олова на паяемые поверхности соответственно кристалла и корпуса и пайке к основанию корпуса с целью исключения использования свинца при пайке, снижения себестоимости производства ППИ, повышения надежности паяных соединений, снижения трудоемкости изготовления ППИ, между кристаллом и корпусом размещают фольгу из цинка, а пайку проводят при температуре 382-419°С.

Сущность изобретения поясняется чертежами, на которых схематично изображены:

на фиг.1 - схема сборки кристалла с корпусом перед пайкой;

на фиг.2 - схема паяного соединения кристалла с корпусом с помощью разработанного способа.

Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу реализуется следующим образом.

На основании корпуса 1 (фиг.1) с покрытием 2 наносят любым известным способом слой олова 3. Затем на основании корпуса размещают фольгу из цинка 4 и полупроводниковый кристалл 6 с алюминиевой пленкой 5.

Пайка осуществляется в водороде или формир-газе при температуре 382-419°С (температура плавления цинка составляет 419°С).

Нагрев при данной температуре (фиг.2) способствует образованию эвтектических соединений Sn-Zn со стороны корпуса 7 (температура эвтектики 200°С) и Al-Zn со стороны кристалла 8 (температура эвтектики 382°С).

Нагрев при пайке ниже 382°С не приводит к образованию эвтектики Al-Zn, а выше 419°С расплавляет цинк.

После пайки зона паяного соединения полупроводникового кристалла с корпусом представляет собой структуру, состоящую из эвтектических соединений Sn-Zn, Zn-Al и чистого Zn.

Данное паяное соединение способствует релаксации напряжений при испытаниях или эксплуатации ППИ, что повышает их надежность.

Таким образом, использование предлагаемого способа бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу обеспечивает по сравнению с существующими способами следующие преимущества:

1. Исключает использование свинца при пайке.

2. Снижает себестоимость производства ППИ.

3. Повышает надежность паяных соединений.

4. Снижает трудоемкость изготовления ППИ.

Источники информации

1. Патент RU 2167469 С2, Н01L 21/52. Способ пайки полупроводникового кристалла к корпусу / Сегал Ю.Е. (RU), Зенин В.В. (RU), Фоменко Ю.Л. (RU), Спиридонов Б.А. (RU), Колбенков А.А. (RU). Опубл. 20.05.2001. Бюл. №14. 4 с.

2. Готра З.Ю. Технология микроэлектронных устройств: Справочник. М.: Радио и связь, 1991. 424 с.

3. Монтаж кристаллов БИС с использованием припоя на основе цинка / К.В.Маслова, С.О.Мохте, О.В.Панкратов и др. // Электронная промышленность, 1989, №6, с.24-26.

Способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу, включающий нанесение алюминия и олова на паяемые поверхности соответственно кристалла и корпуса и пайку к основанию корпуса, отличающийся тем, что между кристаллом и корпусом размещают фольгу из цинка, а пайку проводят при температуре 382-419°С.



 

Похожие патенты:
Изобретение относится к области изготовления полупроводниковых изделий электронной техники и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем пайки припоями, не содержащими свинец.
Изобретение относится к области изготовления мощных полупроводниковых приборов и БИС путем безфлюсовой пайки в вакууме, водороде, аргоне, формиргазе и др. .

Изобретение относится к изготовлению полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред. .

Изобретение относится к области изготовления БИС и СБИС, имеющих большую площадь кристаллов, путем бесфлюсовой пайки в вакууме, водороде, аргоне, формир-газе и др
Изобретение относится к области полупроводниковой микроэлектроники и предназначено для присоединения полупроводникового кристалла к корпусу методом контактно-реактивной пайки с образованием эвтектического сплава Au-Si при производстве транзисторов и интегральных микросхем
Изобретение относится к квантовой электронике, полупроводниковой и оптоэлектронной технологии, в частности технологии изготовления когерентных излучателей для систем накачки мощных твердотельных лазеров, создания медицинской аппаратуры, лазерного технологического оборудования и других целей
Изобретение относится к области изготовления полупроводниковых приборов и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки

Изобретение относится к области изготовления полупроводниковых изделий и может быть использовано при сборке кремниевых кристаллов в корпусе полупроводниковых приборов путем бессвинцовой пайки

Изобретение относится к технологии приборов силовой электроники на основе карбида кремния

Изобретение относится к области изготовления полупроводниковых изделий, имеющих большую площадь кристаллов

Изобретение относится к области производства изделий электроники и электротехники. Решается задача корпусирования электронных компонентов без применения опрессовки и дорогостоящей оснастки, что особенно важно при индивидуальном производстве единичных изделий электронной техники. Способ корпусирования электронных компонентов сочетает вакуумную заливку с приложением давления на компаунд, гарантирует высококачественное формообразование и повышение механических и теплотехнических характеристик изделий. Облегчен также контроль качества изделий путем применения прозрачного основания формы. Способ применим при производстве широкой гаммы изделий электроники и электротехники, а также изделий бытового назначения. 4 з.п. ф-лы, 5 ил.
Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и 1,3-бис-(аминопропил)-тетраметилдисилоксана с изофталоилхлоридом. При подготовке адгезива для применения осуществляют выдержку реакционного раствора, содержащего каталитические количества HCl, при 180-200°C течение 30-40 мин. Соединение кристалла или металла с полиимидным основанием осуществляют при 200-270°C в течение 30-40 мин. Сформированные из предлагаемых адгезивов пленки образуют высокотермостойкие гидрофобные клеевые слои, не содержащие пузырей, причем термическая обработка этих слоев осуществляется при температурах 200-270°C, что не вызывает окисления металлов в металлической разводке по кристаллу.

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с более высокими электрическими и термомеханическими свойствами, а также с увеличенным сроком службы по сравнению с действующими технологиями. Процесс сушки серебросодержащей пасты производится при разреженной атмосфере при давлении 5,5·103-4,0·104 Па и натекании воздуха потоком от 0,5 до 3 л/мин на 1 г серебросодержащей пасты при рабочей температуре 100-150°C в течение 10-60 минут. Снижение содержания восков в спеченном серебряном слое позволит создавать контактные соединения в силовых полупроводниковых приборах с более высокими эксплуатационным характеристиками: пониженное электросопротивление, снижение механических напряжений в соединении, увеличенная теплопроводность соединения. 3 з.п. ф-лы, 1 табл.
Наверх