Теплопередающая поверхность

Изобретение предназначено для теплообмена и может быть использовано в теплообменной технике. Теплопередающая поверхность состоит из металлических полос, свернутых по спирали, и содержит чередующиеся сфероидальные сегменты, имеющие разную высоту. Высота меньшего сфероидального сегмента меньше расстояния между витками металлических полос теплопередающей поверхности, а высота большего сфероидального сегмента равна сумме высоты меньшего сфероидального сегмента и расстояния между витками металлических полос теплопередающей поверхности. Кривизна вогнутой части меньшего сфероидального сегмента равна кривизне выпуклой части большего сфероидального сегмента, и после сворачивания металлических полос по спирали выпуклая часть большего сфероидального сегмента одной полосы совмещена с вогнутой частью меньшего сфероидального сегмента второй полосы. Изобретение обеспечивает повышение технологичности изготовления теплопередающей поверхности, а также снижение ее стоимости. 2 ил.

 

Изобретение относится к спиральным теплопередающим поверхностям и предназначено для использования в спиральных теплообменниках.

Заявителю известна теплопередающая поверхность, изготовленная из рулонной стальной полосы, свернутой по спирали. Для придания спиралям достаточной устойчивости против смятия под действием одностороннего наружного давления на поверхности предусмотрены упорные штифты, которые к тому же обеспечивают заданный зазор между стенками. (А.С.Тимонин. «Основы конструирования и расчета химико-технологического и природоохранного оборудования», Справочник, Т.2., Калуга, Издательство Н.Бочкаревой, 2002 г., 1028 с.; с.729.)

Недостатками данной конструкции теплопередающей поверхности является необходимость установки дополнительных деталей - штифтов.

Этот недостаток устранен у поверхности повышенной турбулентности, выполненной из металлических пластин, на которых в шахматном порядке выштампованы выступы и впадины сфероидального очертания. Две такие пластины, соединенные точечной сваркой в соответствующих впадинах, образуют отдельные элементы. Элементы могут быть изогнуты по определенному контуру, например в спираль. (A.M.Бакластов. «Проектирование, монтаж и эксплуатация теплоиспользующих установок. Учебное пособие для студентов специальности «Промышленная теплоэнергетика» высших учебных заведений», М.: «Энергия», 1970 г., 568 с.; с.28.)

Недостатком конструкции поверхности повышенной турбулентности является необходимость применения операции точечной сварки при ее изготовлении.

Поверхность повышенной турбулентности является наиболее близкой к заявленной теплопередающей поверхности и принята в качестве прототипа.

Цель изобретения - повышение технологичности изготовления и снижение стоимости теплопередающей поверхности путем исключения операции сварки при ее изготовлении.

Техническим результатом изобретения является наличие сфероидальных сегментов с конструктивными особенностями, позволяющими после сворачивания теплопередающей поверхности в спираль иметь заданный размер между витками полос и жесткость конструкции без применения точечной сварки.

Цель изобретения достигается тем, что на металлических полосах 1, 2, образующих теплопередающую поверхность, выдавливают сфероидальные сегменты 3, 4 с разной высотой и чередующиеся друг с другом во взаимно перпендикулярных направлениях. Конструктивная особенность сфероидальных сегментов заключается в том, что кривизна вогнутой части меньшего сфероидального сегмента равна кривизне выпуклой части большего сфероидального сегмента. Высота меньшего сфероидального сегмента меньше расстояния между витками металлических полос теплопередающей поверхности, а высота большего сфероидального сегмента равна сумме высоты меньшего сфероидального сегмента и расстояния между витками металлических полос теплопередающей поверхности. После сворачивания металлических полос по спирали выпуклая часть большего сфероидального сегмента одной полосы совмещена с вогнутой частью меньшего сфероидального сегмента второй полосы. Это позволяет фиксировать положение металлических полос теплопередающей поверхности относительно друг друга, придать конструкции жесткость и исключить операцию точечной сварки теплопередающей поверхности при ее изготовлении.

Отличительными признаками по сравнению с прототипом являются:

- сфероидальные сегменты имеют разную высоту;

- выпуклая часть большего сфероидального сегмента совмещается с вогнутой частью меньшего сфероидального сегмента;

- отсутствует точечная сварка.

На фиг.1 показана теплопередающая поверхность свернутая по спирали, на фиг.2 - разрез А-А на фиг.1.

Теплопередающая поверхность, состоящая из двух металлических полос 1, 2, содержит выдавленные сфероидальные сегменты 3, 4 разной высоты и чередующиеся друг с другом в продольном и поперечном направлениях. При сворачивании полос по спирали выпуклая часть большего сфероидального сегмента одной полосы совмещена с вогнутой частью меньшего сфероидального сегмента второй полосы. Конструктивные особенности исполнения сфероидальных сегментов позволяют формировать каналы, с заданным расстоянием между витками полос, для движения по ним теплоносителей. Холодный и горячий теплоносители подаются по разные стороны металлических полос 1, 2, что исключает их перемешивание. А процесс теплопередачи производится через теплопередающую поверхность. Чередование сфероидальных сегментов во взаимно перпендикулярных направлениях позволяет избежать образования туннелей внутри каналов и тем самым обеспечить более высокую теплоотдачу.

Теплопередающая поверхность из металлических полос, свернутых по спирали, содержащая выдавленные сфероидальные сегменты, отличающаяся тем, что чередующиеся сфероидальные сегменты имеют разную высоту, причем высота меньшего сфероидального сегмента меньше расстояния между витками металлических полос теплопередающей поверхности, а высота большего сфероидального сегмента равна сумме высоты меньшего сфероидального сегмента и расстояния между витками металлических полос теплопередающей поверхности, а также кривизна вогнутой части меньшего сфероидального сегмента равна кривизне выпуклой части большего сфероидального сегмента, и после сворачивания металлических полос по спирали выпуклая часть большего сфероидального сегмента одной полосы совмещена с вогнутой частью меньшего сфероидального сегмента второй полосы.



 

Похожие патенты:

Изобретение относится к теплоэнергетике и может быть использовано в холодильной технике в качестве испарителя или конденсатора холодильной машины. .

Изобретение относится к энергетическому, транспортному и химическому машиностроению, пищевой промышленности и может быть использовано в теплообменных аппаратах

Изобретение относится к аппаратам для проведения теплообменных процессов и может быть использовано в промышленности, на транспорте, в быту для передачи теплоты от одного теплоносителя к другому

Изобретение относится к теплотехнике, а именно к спиральным теплообменникам и способу их изготовления, и может быть использовано в химической, пищевой, нефтеперерабатывающей и других отраслях промышленности

Изобретение относится к области теплотехники, а именно к теплопередающим поверхностям, и может быть использовано при изготовлении теплообменных поверхностей

Изобретение относится к теплообменникам, в частности к воздушным охладителям кислородно-водородной смеси для газопламенной обработки металлов, полученной электролизом воды в электролизно-водном генераторе

Изобретение относится к теплообменным аппаратам и может быть использовано в различных отраслях промышленности для передачи теплоты между потоками флюидов. Предложен теплообменник, состоящий из корпуса с патрубками подвода и отвода теплоносителей. Вдоль оси теплообменника установлены блоки теплообменных элементов с двумя периферическими распределительными коллекторами второго теплоносителя, образующие периферический и аксиальный коллекторы первого теплоносителя. Каждый из теплообменных элементов выполнен полым с нечетным количеством радиальных разрезов, в которых размещены поперечные перегородки, при этом стенки теплообменных элементов имеют радиально направленные дистанционирующие выступы с одной из сторон, которые попеременно образуют в наружной полости щелевые каналы для первого, а во внутренней полости - для второго теплоносителя. Технический результат - упрощение конструкции, исключение требований по компоновке, повышение среднего температурного напора. 2 з.п. ф-лы, 2 ил.

Изобретение относится к теплообменным аппаратам и может быть использовано в различных отраслях промышленности для передачи теплоты между потоками флюидов. Предложен теплообменник, включающий корпус с патрубками подвода и отвода теплоносителей. Вдоль оси теплообменника установлены блоки теплообменных элементов с двумя периферическими распределительными коллекторами второго теплоносителя каждый, при этом в аксиальной части теплообменника размещена цилиндрическая обечайка с двумя противолежащими выпуклыми днищами, примыкающая к внутренним приосевым поверхностям теплообменных элементов. Каждый из теплообменных элементов выполнен полым с нечетным количеством радиальных разрезов, при этом стенки теплообменных элементов имеют аксиально направленные дистанционирующие выступы с одной из сторон, которые попеременно образуют в наружной полости аксиальные щелевые каналы для первого, а во внутренней полости - аксиальные щелевые каналы для второго теплоносителя. Периферические распределительные коллекторы второго теплоносителя разных блоков могут быть выполнены сообщающимися друг с другом последовательно либо параллельно. Технический результат - упрощение конструкции, исключение требований по компоновке, повышение среднего температурного напора. 1 з.п. ф-лы, 2 ил.

Изобретение относится к аппаратам для осуществления тепло- и массообмена флюидов и может быть использовано в различных отраслях промышленности. Тепломассообменный аппарат содержит корпус с патрубками ввода/вывода флюидов, в котором установлены один или несколько смежных блока, состоящих из вертикальных, соприкасающихся турбулизирующими выступами тепломассообменных элементов, образующих кольцевой ряд вокруг вертикальной оси корпуса, формирующих периферийный и центральный распределительные коллекторы, в которых установлены перегородки, которые обеспечивают поворот радиального потока флюида при переходе между блоками. Стенки тепломассообменных элементов соединены одним горизонтальным сварным швом, расположенным на боковой поверхности или в тыльной части, при этом фронтальная и тыльная части тепломассообменного элемента имеют в поперечном сечении эллипсовидную форму. При работе предлагаемого тепломассообменного аппарата поток одного флюида проходит в аксиальном направлении, обтекая тепломассообменные элементы, фронтальная и/или тыльная части которых имеют близкую к совершенной гидродинамическую форму. Поток другого флюида обтекает тепломассообменные элементы в радиальном направлении сначала от периферии к центру, а затем обратно. Техническим результатом является снижение гидравлического сопротивления и повышение надежности аппарата. 6 з.п. ф-лы, 2 ил.
Наверх