Способ дегазации жидкости и устройство для его осуществления

Изобретение относится к области очистки жидкостей от содержащихся в них газов как в свободном, так и растворенном виде и может быть использовано в различных отраслях промышленности для дегазации технологических жидкостей. Дегазация жидкости заключается в том, что массе жидкости сообщают вращательное движение, воздействуя на нее акустическим полем в тангенциальном или тангенциально-продольном направлении относительно оси вращения объема жидкости, посредством которого осуществляют разделение газовой фазы и жидкой. Дегазация осуществляется в устройстве, содержащем камеру для дегазируемой жидкости, патрубки подвода газожидкостной смеси и отвода жидкости, при этом камера снабжена акустическими излучателями, активная поверхность которых установлена в тангенциальном или тангенциально-продольном направлении со смещением относительно друг друга в осевом направлении камеры. Также дегазационная камера снабжена дополнительным акустическим излучателем, активная поверхность которого установлена в продольном направлении относительно оси дегазационной камеры. Технический результат состоит в том, что разработана упрощенная конструкция дегазационного устройства и обеспечено более эффективное проведение процессов дегазации жидкости. 2 н. и 2 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области очистки жидкостей от содержащихся в них газов как в свободном, так и растворенном виде и может быть использовано в различных отраслях промышленности для дегазации технологических жидкостей, в частности для дегазации жидких компонентов ракетных топлив, пластовой воды в технологических системах поддержания пластового давления.

Необходимость в проведении дегазации технологических жидкостей связана с современными требованиями, предъявляемыми к уровню остаточного газосодержания в различных жидкостях. Эта необходимость обусловлена следующими причинами:

1) для обеспечения бескавитационной работы различных насосных агрегатов, так как при работе высокопроизводительных насосов возможно выделение растворенных в жидкости газов, приводящее к неустойчивым режимам перекачки и, как следствие, снижение расходных характеристик насосных агрегатов;

2) наличие растворенных и свободных газов, являющихся вредными по отношению к технологическим и химическим процессам в нефтегазовой и химической промышленности, вызывает нежелательные физико-химические реакции, приводящие к нарушению норм по охране труда и экологии.

Известны технические решения по дегазации жидкостей, описание которых приведено в патенте Российской Федерации №2246446 и заявке на изобретение RU №2004113993, патенте США №6827820 и международном патенте №WO 2004/001204.

Проведенный автором анализ показал, что известные технические решения обладают следующими недостатками:

а) сложность конструктивного исполнения устройств, реализующих дегазацию жидкостей в поле центробежных сил;

б) низкая производительность процессов дегазации жидкостей;

в) невозможность эффективного удаления из жидкостей растворенных газов.

Наиболее близкими к заявляемому являются следующие технические решения:

- способ дегазации жидкости, приведенный в патенте США №6827820;

- устройство для дегазации жидкости, описанное в заявке на изобретение RU №2004113993.

Известный способ дегазации жидкости на основе патента США №6827820 включает в себя следующие основные операции:

- массе жидкости сообщают вращательное движение;

- осуществляют разделение газовой фазы и жидкой посредством центробежных сил.

Для создания вращения массы жидкости используют лопастной ротор, связанный с приводом вращения.

Анализ известного технического решения показывает, что для реализации этого способа дегазации требуется достаточно сложная конструкция с высокой точностью изготовления, которая должна обеспечить качественную и производительную дегазацию с наименьшими потерями жидкой фазы.

Известное устройство для дегазации жидкости по заявке на изобретение RU №2004113993 содержит камеру для дегазируемой жидкости, патрубки подвода газожидкостной смеси и отвода жидкости.

В газоотделительной камере установлен лопастной ротор, включающий в себя приводной вал, соединенный с крыльчаткой.

Анализ известного технического решения показывает, что его конструкция является достаточно сложной и содержит большое количество механических элементов, что снижает надежность устройства и эффективность его работы.

Таким образом, существенными недостатками известных технических решений являются относительные сложность и надежность конструкции устройства для осуществления указанного способа дегазации жидкости. Кроме того, известные технические решения не обеспечивают эффективного удаления из жидкости растворенных газов.

Целью предлагаемого технического решения является устранение вышеуказанных существенных недостатков.

Поставленная цель достигается проведением дегазации жидкости и выполнением устройства для ее осуществления таким образом, что:

1. Вращательное движение массы жидкости создают, воздействуя на нее акустическим полем в тангенциальном или тангенциально-продольном направлении относительно оси вращения объема жидкости.

2. Дегазационная камера снабжена акустическими излучателями, активная поверхность которых установлена в тангенциальном или тангенциально-продольном направлении относительно оси дегазационной камеры.

3. Акустические излучатели установлены относительно друг друга со смещением в осевом направлении камеры.

4. Дегазационная камера снабжена дополнительным акустическим излучателем, активная поверхность которого установлена в продольном направлении относительно оси дегазационной камеры.

Перечисленные выше признаки являются существенными отличительными, предлагаемыми автором.

Анализ патентной и научно-технической литературы, проведенный автором, показал, что предложенное сочетание существенных отличительных признаков заявляемых технических решений в известных источниках информации не обнаружено, и, следовательно, известные технические решения не проявляют тех же свойств, что и в заявляемых способе и устройстве для его осуществления.

Заявляемые технические решения поясняются чертежами.

На фиг.1 изображен общий вид предлагаемого устройства для дегазации жидкости, на фиг.2 - разрез А-А на фиг.1.

Устройство для дегазации жидкости содержит камеру 1 для дегазируемой жидкости, патрубок 2 подвода газожидкостной смеси и патрубок 3 отвода жидкости. Верхняя часть камеры 1 снабжена газоотводящим патрубком 4. Внутри камеры 1 на ее обечайке установлены акустические, например пьезоэлектрические, излучатели 5 таким образом, что активная (излучающая) поверхность создает акустическое поле в тангенциальном или тангенциально-продольном направлении. Это обеспечивается размещением активной излучающей поверхности под углом α по отношению к оси камеры и под углом β по отношению к касательной обечайки камеры 1. Кроме того, акустические излучатели 5 установлены относительно друг друга со смещением h в осевом направлении камеры 1. Величина h выбирается исходя из количества установленных излучателей 5, их резонансной частоты, интенсивности акустических полей и объема камеры 1. Оптимальное значение величины h определяется расчетным либо экспериментальным путем. В нижней части камеры 1 для интенсификации процесса дегазации жидкости установлен акустический (пьезоэлектрический или магнитострикционный) излучатель 6, активная поверхность которого создает акустическое поле в продольном направлении относительно оси камеры 1.

Заявляемый способ дегазации жидкости, осуществляемый с помощью предлагаемого устройства, включает в себя следующие операции (см. фиг.1 и фиг.2):

1) посредством патрубка 2 в камеру 1 подают газожидкостную смесь и заполняют ее до необходимого уровня свободной поверхности смеси (патрубок 3 перекрыт каким-либо запорным органом, который на чертеже условно не показан);

2) создают вращательное движение объема жидкости в камере 1 посредством акустических излучателей 5, подключенных к источнику акустических колебаний (генератору);

3) осуществляют воздействие на вращающийся объем газожидкостной смеси акустическим полем излучателя 6, также подключенного к источнику акустических колебаний;

4) выделившиеся из жидкости газы удаляются из камеры 1 через газоотводящий патрубок 4;

5) после окончания процесса дегазации прекращают воздействие акустических излучателей 5 и 6 на жидкость и сливают обезгаженную жидкость посредством патрубка 3 в какую-либо емкость для последующего использования.

Вращательное движение объема жидкости создается акустическими излучателями за счет акустических течений, возникающих в соответствии с законом сохранения количества движения (см. Ультразвук. Маленькая энциклопедия. Глав. ред. И.П.Голямина. - М.: «Советская энциклопедия», 1979, с.25). Скорость акустических течений в зависимости от частоты и интенсивности колебаний может достигать значений порядка 5·102 см/с в жидкостях. Кроме того, воздействие акустических колебаний на газожидкостную смесь ускоряет выделение из жидкости газовой фазы как в свободном, так и в растворенном виде. Дополнительное воздействие на газовую фазу излучателем 6, размещенным в нижней части камеры 1, позволяет ускорить всплывание газовых пузырьков за счет действия радиационного давления акустического поля. При этом исключается эффект экранирования верхних слоев пузырьков газа нижними слоями, который наблюдается при дегазации неподвижного объема жидкости. Это обусловлено тем, что вращение объема жидкости создает центробежные силы, которые формируют газовую фазу в центре (вдоль оси), а жидкую фазу на периферии камеры 1. Причем явление дифракции акустической волны на пузырьках газа от излучателя 6 позволяет воздействовать на более верхние слои всплывающих пузырьков.

Выбор конкретных частотных и силовых режимов акустических излучателей 5 и 6 определяется физико-химическими характеристиками дегазируемой жидкости.

В частности, в таблице приведены расчетные режимы дегазации для воды, керосина и жидкого кислорода.

Режимы дегазации различных жидкостей
ЖидкостьВодаКеросинЖидкий кислород
Параметры
Резонансная частота излучателей 5, МГц0,2...20,1...0,50,04...0,1
Интенсивность акустического поля излучателей 5, Вт/см22...100,5...60,8...2
Резонансная частота излучателя 6, кГц27...5020...4418...36
Интенсивность акустического поля излучателя 6, Вт/см20,5...20,4...20,5...1,5

Предлагаемые технические решения позволяют проводить дегазацию жидкостей также и в поточном режиме, при условии поддержания постоянного уровня свободной поверхности жидкости в камере 1.

Таким образом, как видно из изложенного, использование заявляемых технических решений позволяет упростить конструкцию дегазационного устройства и обеспечить более эффективное проведение процессов дегазации жидкости, т.е. тем самым достигаются цели изобретения.

В настоящее время автором проводятся экспериментальные исследования по выбору оптимальных режимов предложенных технических решений.

1. Способ дегазации жидкости, заключающийся в том, что массе жидкости сообщают вращательное движение, посредством которого осуществляют разделение газовой фазы от жидкой, отличающийся тем, что вращательное движение массы жидкости создают, воздействуя на нее акустическим полем в тангенциальном или тангенциально-продольном направлении относительно оси вращения объема жидкости.

2. Устройство для осуществления способа по п.1, содержащее камеру для дегазируемой жидкости, патрубки подвода газожидкостной смеси и отвода жидкости, отличающееся тем, что камера снабжена акустическими излучателями, активная поверхность которых установлена в тангенциальном или тангенциально-продольном направлении относительно оси дегазационной камеры.

3. Устройство по п.2, отличающееся тем, что акустические излучатели установлены относительно друг друга со смещением в осевом направлении камеры.

4. Устройство по п.2 или 3, отличающееся тем, что дегазационная камера снабжена дополнительным акустическим излучателем, активная поверхность которого установлена в продольном направлении относительно оси дегазационной камеры.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения продукции нефтяных скважин на газ, нефть и воду. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к установкам очистки сероводородсодержащих нефтей, и может быть использовано для промысловой очистки сернистых нефтей от сероводорода и легких метил-, этилмеркаптанов до уровня современных требований (ГОСТ Р 51858-2002).

Изобретение относится к технике очистки воды, технологических жидкостей и производственных сточных вод от растворенных газов. .

Изобретение относится к удалению растворенных газов из жидкости и может быть использовано в нефтяной, газовой и нефтехимической промышленности, в частности для удаления сероводорода и окислов углерода из нефти в процессах подготовки сероводородосодержащих нефтей на промыслах.

Изобретение относится к установкам очистки нефти от сероводорода и легких меркаптанов. .

Изобретение относится к сепараторам для разделения жидких сред, имеющих различный удельный вес, и для выделения накопившейся в жидкости газообразной среды. .

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разделения нефти и газа при сборе продукции скважин. .

Изобретение относится к нефтяной промышленности, в частности к дегазации нефтеводогазовой смеси в сепараторе первой ступени. .

Изобретение относится к нефтедобывающей промышленности, в частности к способам подготовки сероводородсодержащей нефти для транспортирования и разделения. .

Изобретение относится к способам подготовки нефти и может быть использовано в нефтегазодобывающей промышленности при подготовке сероводородсодержащих нефтей, газоконденсатов с высоким содержанием сероводорода и метил- и этилмеркаптанов на объектах, расположенных на значительном расстоянии от УСО, или на объектах, где отсутствует возможность транспортирования дополнительного объема сероводородсодержащего газа

Дегазатор // 2318575
Изобретение относится к устройствам для дегазации буровых растворов

Изобретение относится к способам очистки жидкостей от газа и может быть использовано для очистки нефти от сероводорода в нефтедобывающей промышленности при промысловой подготовке нефти и газа, а также для деаэрации в системе водоподготовки питательной воды котельных установок

Изобретение относится к области микрожидкостных технологий и может быть использовано для вывода газовых пузырьков из каналов и резервуаров различных микрофлюидных устройств

Изобретение относится к области оборудования для нефтедобывающей промышленности, а именно к сепарационным установкам для разделения продукции нефтедобывающих скважин на воду, нефть и газ, и может быть применено в напорных системах сбора и подготовки нефти
Изобретение относится к составам для снижения пенообразования в частности при водной дегазации растворов синтетических каучуков, и может быть использовано в производстве синтетических латексов и каучуков

Изобретение относится к гидробакам со средствами дегазации воды
Изобретение относится к способу подавления вспенивания водной системы
Изобретение относится к технической физике, в частности к теплотехнике, и может быть использовано, например, для дегазации подпиточной воды в системах охлаждения в водо-водяных реакторах атомных электростанций

Изобретение относится к оборудованию для нефтедобывающей промышленности, а именно к установкам для подготовки воды, и может быть применено в напорных системах сбора и подготовки нефти
Наверх