Малоэмиссионная камера сгорания газовой турбины

Малоэмиссионная камера сгорания газовой турбины, работающая преимущественно на сжатом газе с низкими выбросами окислов азота и углерода, содержит фронтовое устройство и цилиндрическую жаровую трубу с отверстиями для подачи воздуха, расположенными по окружности жаровой трубы. Фронтовое устройство состоит по меньшей мере из двух модулей с полостями предварительного перемешивания топлива с воздухом. Отношение расстояния между осями соседних модулей к внутреннему диаметру жаровой трубы составляет 0,4-0,5. Отношение длины полости предварительного перемешивания каждого модуля к диаметру его выходного сопла равно 0,6-0,8. Жаровая труба включает полость горения топливовоздушной смеси и полость смешения горячих газов с воздухом. Жаровая труба содержит сплошную внутреннюю стенку и наружную перфорированную оболочку, кольцевой канал между которыми выполнен с возможностью подвода охлаждающего воздуха в полость смешения. Отношение длины полости горения к внутреннему диаметру жаровой трубы составляет 0,9-1,1. Отверстия для подачи воздуха выполнены в полости смешения. Изобретение снижает эмиссию вредных веществ за счет организации "богато-бедного" горения топлива путем осуществления предварительного перемешивания топлива с воздухом во фронтовом устройстве и исключения подачи охлаждающего воздуха в зону горения. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к конструкциям камер сгорания газовых турбин, работающих преимущественно на сжатом газе с низкими выбросами окислов азота и углерода.

Известна камера сгорания, включающая жаровую цилиндрическую трубу с несколькими рядами отверстий для подачи воздуха в зону горения, расположенными на разном расстоянии от конического фронтового устройства и выполненными с соответствующей суммарной проходной площадью, а коническое фронтовое устройство выполнено с расположенной по его оси газовой горелкой, имеющей газораздающие отверстия. Такую конструкцию, в частности, имеют камеры сгорания газотурбинных установок Frame-3 и Frame-5 фирмы «Дженерал Электрик» (A.V.Soudarev, Yu.l.Zakharov, E.D.Vinogradov, G.N.Polyakov, K.F.Ott, V.F.Usenko. Update of Enviromental Record of Gas Pumping Units of Frame-5 Run on Gas Pipelines of Tyumen Region, Russia, 12-th Turbomachinery Maintenance Congress (TMC'96) Bangkok, Thailand. Fig. FRAME-5 unit combustor ode design venison scheme).

Недостатком известной камеры сгорания является высокая эмиссия вредных веществ, прежде всего оксида азота и углерода, не удовлетворяющая современным экологическим требованиям, что обусловлено не оптимальными с точки зрения эмиссионных характеристик камеры сгорания размерами и расположением отверстий для подачи воздуха в зону горения.

Наиболее близкой по конструкции к заявляемой является камера сгорания, включающая жаровую цилиндрическую трубу с отверстиями для подачи воздуха в зону горения, которые расположены равномерно по окружности жаровой трубы с суммарной проходной площадью, определяемой по математической формуле. Эти отверстия разделены на большие и малые и расположены на расстоянии, равном 0,2-0,4 диаметра жаровой трубы от фронтового устройства (патент РФ № 2162194, F23R 3/06, 2001 г.).

В известной конструкции предварительная подготовка смеси топлива с воздухом не производится, а воздух подается в зону горения, что не обеспечивает необходимую эмиссию вредных веществ в процессе работы камеры сгорания и не позволяет выполнить экологические требования по выбросам оксидов азота и углерода.

Техническая задача, решаемая изобретением, заключается в снижении эмиссии вредных веществ за счет организации "богато-бедного" горения топлива путем осуществления предварительного перемешивания топлива с воздухом во фронтовом устройстве и исключения подачи охлаждающего воздуха в зону горения.

Сущность изобретения заключается в том, что в малоэмиссионной камере сгорания, содержащей фронтовое устройство и цилиндрическую жаровую трубу с отверстиями для подачи воздуха, расположенными по окружности жаровой трубы, согласно изобретению, фронтовое устройство состоит по меньшей мере из двух модулей с полостями предварительного перемешивания топлива с воздухом, при этом отношение расстояния между осями соседних модулей к внутреннему диаметру жаровой трубы (a/D) составляет 0,4-0,5, а отношение длины полости предварительного смешивания каждого модуля к диаметру его выходного сопла (L/D1) равно 0,6-0,8.

Жаровая труба включает полость горения топливовоздушной смеси и полость смешения горячих газов с воздухом, при этом жаровая труба включает сплошную внутреннюю стенку и наружную перфорированную оболочку, кольцевой канал между которыми выполнен с возможностью подвода охлаждающего воздуха в полость смешения, причем L1/D=0,9-1,1, где L1 - длина полости горения, а отверстия для подачи воздуха выполнены в полости смешения.

Кроме того, отверстия для подачи воздуха выполнены с разными диаметрами d1, d2, d3, при этом d1/D=0,17-0,20, d2/D=0,12-0,15, d3/D=0,07-0,10.

Выполнение фронтового устройства многомодульным (по меньшей мере, двухмодульным) и с полостями предварительного перемешивания топлива с воздухом позволяет повышать качество смесеобразования, однородность топливовоздушной смеси и полноту ее сгорания.

Соотношение расстояния между осями соседних модулей к внутреннему диаметру жаровой трубы (a/D) должно составлять 0,4-0,5. В случае, когда a/D>0,5, зона горения будет смещаться к стенке жаровой трубы, что вызовет повышение ее температуры, необходимость подачи дополнительного количества охлаждающего воздуха и приведет к снижению ресурса жаровой трубы и ее прогару. При a/D<0,4 ухудшается предварительное перемешивание топлива с воздухом, что приводит к повышению эмиссии вредных веществ.

Отношение длины полости предварительного перемешивания каждого модуля к диаметру его выходного сопла (L/D1) составляет 0,6-0,8. При L/D1<0,6 будет снижаться время смесеобразования, степень и однородность перемешивания будут недостаточными, что приведет к повышению эмиссии вредных веществ.

Если отношение L/D1 превышает 0,8, то перемешивание будет более качественным, однако будет возможен «проскок» пламени во внутреннюю полость модуля.

Жаровая труба включает сплошную внутреннюю стенку и наружную перфорированную оболочку, кольцевой канал между которыми выполнен с возможностью подвода охлаждающего воздуха в зону смешения, что позволяет осуществлять охлаждение нагретой внутренней стенки и отводить воздух из зоны горения, тем самым обеспечивая процесс «богатого» горения топливовоздушной смеси.

Размещение отверстий для подачи воздуха в зоне смешения, а не в зоне горения, обеспечивает быстрое перемешивание продуктов сгорания зоны «богатого» горения с воздухом, снижает температуру горения топлива и сокращает время пребывания продуктов сгорания в зоне повышенных температур, снижая эмиссию вредных веществ.

Отношение длины полости горения L1 к внутреннему диаметру жаровой трубы D составляет 0,9-1,1. При L1/D<0,9 в процессе горения топливовоздушной смеси будет наблюдаться выброс несгоревших углеводородных составляющих топлива. При L1/D>1,1 в процессе горения топливовоздушной смеси в выхлопных газах количество азотсодержащих веществ будет увеличенным.

Кроме того, отверстия для подачи воздуха, выполненные в зоне смешения, позволяют оптимизировать поле температур на выходе из жаровой трубы при удовлетворительном состоянии жаровой трубы. Заявляемые соотношения диаметров отверстий к внутреннему диаметру жаровой трубы обеспечивают максимальную «пробивную» способность воздушной струи, и, соответственно, самую низкую эмиссию вредных веществ выхлопных газов.

На фиг.1 изображена камера сгорания газовой турбины; на фиг.2 дан разрез А-А на фиг.1.

Малоэмиссионная камера сгорания содержит жаровую трубу 1 с фронтовым устройством, включающим модули 2, 3, а также форсунку 4, имеющую распылители 5, 6 с отверстиями 7 для подачи топлива 8 (жидкого или газообразного). Модули 2, 3 снабжены тангенциальными завихрителями 9, через которые поступает сжатый компрессором поток воздуха 10. Отношение расстояния а между осями соседних модулей 2, 3 к внутреннему диаметру d жаровой трубы 1 составляет 0,4-0,5.

Модули 2, 3 выполнены с полостями 11 предварительного перемешивания воздуха 10 с топливом 8 с образованием топливовоздушной смеси. Полость 11 имеет длину L от отверстий 7 подачи топлива 8 до торца 12 выходного сопла модулей 2, 3 с диаметром D1. Отношение L/D1 составляет 0,6-0,8. Жаровая труба 1 включает цилиндрическую внутреннюю стенку 13 и перфорированную наружную оболочку 14 с отверстиями 15 для подачи охлаждающего воздуха 16. Между стенками 13, 14 выполнен кольцевой канал 17, по которому проходит охлаждающий воздух 16, не попадая в полость горения 18 длиной L1. Полость горения 18 расположена между торцом 12 выходного сопла модулей 2, 3 и отверстиями подачи воздуха 19, 20, 21, выполненными в полости смешения 22.

Отверстия 19 имеют диаметр d1, отверстия 20 - диаметр d3, отверстия 21 - диаметр d2. Отверстия 21 могут располагаться по периметру между двумя соседними отверстиями 20, а отверстия 19 и 20 - через одно.

Малоэмиссионная камера сгорания работает следующим образом.

Топливо 8 через форсунку 4 подают к отверстиям 7 распылителей 5, 6 и далее в полость 11. Одновременно сжатый компрессором поток воздуха 10, обтекая форсунку 4, поступает на вход тангенциальных завихрителей 9, в которых он закручивается. Закрученный поток воздуха 10 разбивает встречные струи топлива 8, выходящие из отверстий 7. При этом в полости 11 модулей 2, 3 происходит предварительное перемешивание воздуха 10 с топливом 8 с образованием топливовоздушной смеси. Смесь поступает в полость горения 18 жаровой трубы 1 полностью перемешанной и с однородным составом, где происходит процесс его горения.

Поток охлаждающего воздуха 16, проходя через отверстия 15 перфорированной стенки 14 жаровой трубы 1, ударяется о внутреннюю стенку 13, охлаждая ее. Далее поток воздуха 16 отводится по кольцевому каналу 17 в зону смешения 22, где осуществляется быстрое перемешивание продуктов сгорания топливовоздушной смеси с воздухом, поступающим в жаровую трубу 1 сквозь отверстия 19, 20, 21, обеспечивая высокую однородность этой смеси. Результатом является снижение эмиссии вредных веществ, а также оптимальное поле температур на выходе из жаровой трубы.

1. Малоэмиссионная камера сгорания газовой турбины, содержащая фронтовое устройство и цилиндрическую жаровую трубу с отверстиями для подачи воздуха, расположенными по окружности жаровой трубы, отличающаяся тем, что фронтовое устройство состоит по меньшей мере из двух модулей с полостями предварительного перемешивания топлива с воздухом, при этом отношение расстояния между осями соседних модулей к внутреннему диаметру жаровой трубы (a/D) составляет 0,4-0,5, а отношение длины полости предварительного перемешивания каждого модуля к диаметру его выходного сопла (L/D1) равно 0,6-0,8, жаровая труба включает полость горения топливовоздушной смеси и полость смешения горячих газов с воздухом, при этом жаровая труба включает сплошную внутреннюю стенку и наружную перфорированную оболочку, кольцевой канал между которыми выполнен с возможностью подвода охлаждающего воздуха в полость смешения, причем L1/D=0,9-1,1, где L1 - длина полости горения, а отверстия для подачи воздуха выполнены в полости смешения.

2. Малоэмиссионная камера сгорания по п.1, отличающаяся тем, что отверстия для подачи воздуха выполнены с разными диаметрами d1, d2, d3, при этом d1/D=0,17-0,20, d2/D=0,12-0,15, d3/D=0,07-0,10.



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям, в частности к конструкциям основных камер сгорания. .

Изобретение относится к газотурбинным двигателям, в частности к конструкциям основных камер сгорания. .

Изобретение относится к инжектору (10) для жидкого топлива, предназначенному для горелок в газовых турбинах, такого типа, какой используется внутри горелок, оснащенных камерой (62) предварительного смешивания и элементом (13) для создания турбулентности в потоке сжатого воздуха, получаемого из компрессора газовой турбины.

Изобретение относится к авиадвигателестроению, в частности к камерам сгорания газотурбинных двигателей, работающих на водороде. .

Изобретение относится к газотурбинному двигателестроению, а именно к конструкциям камер сгорания газотурбинных двигателей

Изобретение относится к конструкциям газотурбинного двигателя, в частности основных камер сгорания

Изобретение относится к прямоточным воздушно-реактивным двигателям

Устройство стабилизации факела пламени для форсажной камеры турбореактивного двигателя двухконтурной конструкции, содержащего первый (3) и второй (5) кольцевые внутренние контуры, между которыми располагается проход (4) для первичного потока, и наружный кольцевой контур (2), который образует совместно с указанным выше первым внутренним кольцевым контуром (3) проход (1) для вторичного потока, содержащее, по меньшей мере, одну опору стойки (8), изготовленную из металлического материала и предназначенную для крепления к указанному выше наружному кольцевому контуру (2) посредством верхней платины (9), и, по меньшей мере, одну стойку стабилизатора факела пламени (7). Стойка стабилизатора факела пламени (7) имеет моноблочную конструкцию, изготовленную из композитного материала и выполненную в виде двух жестко соединенных между собой стенок (28a, 28b), расположенных таким образом, что они образуют горловину с профилем, имеющим, по существу, форму буквы V. Верхние части (31а, 31b) указанных стенок, располагающиеся во вторичном потоке, несут на себе средства крепления (34a, 34b) к опоре стойки (8). Верхние части (31a, 31b) стенок (28а, 28b) являются плоскими и располагаются одна напротив другой. Изобретение направлено на улучшение конструкции за счет применения стоек стабилизатора факела пламени, обладающих более высокой механической стойкостью. 3 н. и 14 з.п. ф-лы, 7 ил.

Изобретение относится к области энергетики. Горелка (1) промежуточного подогрева содержит канал (2) с трубкой (3), расположенной в канале с возможностью впрыскивания топлива в плоскости (4), перпендикулярной продольной оси (15) канала, причем конец (14) трубки (3) расположен по потоку перед областью (16) высоких скоростей, и завихрители (7) выступают от каждой из стенок канала, причем канал (2) содержит боковые стенки (10) и верхнюю и нижнюю стенки (11) и имеет прямоугольное, квадратное или трапециевидное сечение, при этом канал (2) и трубка (3) ограничивают в направлении потока горячих газов (G) зону (6) вихреобразования перед плоскостью (4) впрыскивания и зону (9) смешивания за плоскостью (4) впрыскивания, при этом зона (9) смешивания включает в себя область (16) больших скоростей с постоянным поперечным сечением и расположенную за ней в направлении потока горячих газов (G) область (17) торможения с расширяющимся поперечным сечением, а горелка в области (16) больших скоростей зоны (9) смешивания имеет наименьшее поперечное сечение. Ширина (w) и высота (h) области (17) торможения увеличиваются в направлении выходного отверстия (19) горелки. Внутренняя стенка (20) области (17) торможения имеет выступ (21), образующий участок, на котором горячие газы отделяются от внутренней стенки (20) области торможения. Выступ (21) расположен по окружности на внутренней стенке (20) области торможения. Зона (6) вихреобразования имеет по меньшей мере один участок, на котором ее ширина (w) и высота (h) увеличиваются в направлении выходного отверстия (19) горелки. Изобретение позволяет предотвратить проскок пламени в горелку, снизить выбросы NOx и СО в атмосферу. 5 з.п. ф-лы, 8 ил.

Изобретение относится к энергетике. Щелевой инжектор-генератор вихрей, установленный в канале вдоль направления движения высокоэнергетического газового потока. При этом плоский щелевой канал инжектора выполнен с косым срезом на выходе и установлен таким образом, что срез щели образует острый угол с направлением набегающего высокоэнергетического потока. Величину угла среза выбирают из соображений интенсивности перемешивания газовых потоков и равномерности заполнения потока инжектируемым газом. Также представлен способ работы щелевого инжектора. Изобретение позволяет интенсифицировать процессы смешения, воспламенения и горения топливовоздушных смесей в камерах сгорания прямоточных воздушно-реактивных двигателей и в других установках с тепломассоподводом. 2 н.п. ф-лы, 2 ил.

Камера сгорания газотурбинного двигателя содержит корпус, топливовоздушный канал с топливной форсункой и свечой. Камера сгорания выполнена прямоточной. Топливовоздушный канал расположен аксиально к корпусу и соединен с ним. В корпусе на обтекателе расположен регистр с углом закрутки лопаток 60±5°. На внутренней поверхности корпуса за счет центробежных сил закрученного топливовоздушного потока образована топливная пленка. Изобретение направлено на уменьшение токсичности, повышении кпд, повышении надежности запуска при сжигании бедных топливовоздушных смесей. 4 ил.

Форсажная камера сгорания турбореактивного двигателя содержит корпус, подключенный к турбине, сопло, топливные или топливно-воздушные коллекторы, к которым подключены форсунки с распылителями. Форсунки с распылителями снабжены микрозавихрителями. Каждый из микрозавихрителей представляет собой конусообразный корпус форсунки с закруглениями небольшого радиуса R у основания конуса, расположенного вблизи распылителя. Форсунки с микрозавихрителем подключены за коллекторами по потоку воздуха так, что впрыснутое топливо или топливовоздушная смесь совпадает по направлению движения с потоком воздуха и продуктов сгорания за турбиной в форсажной камере сгорания. У основания конуса корпуса форсунки выполнен цилиндрический поясок распылителя. Изобретение позволяет снизить выбросы вредных веществ в атмосферу и уменьшить длину форсажной камеры сгорания. 1 з.п. ф-лы, 3 ил.
Наверх