Способ измерения параметров оптических систем

Изобретение может быть использовано для определения фокусного расстояния, радиуса диафрагмы и размеров фоточувствительной области матричного приемника изображения оптических систем оптико-электронного датчика (ОЭД) при разработке и исследовании систем технического зрения. В способе при определении фокусного расстояния оптической системы ОЭД матричный приемник изображения ОЭД располагают на расстоянии, совпадающем с фокусным расстоянием f оптической системы ОЭД, фокусируют оптическую систему ОЭД на бесконечность, размещают тестовый точечный объект на оптической оси и последовательно смещают тестовый точечный объект вдоль оптической оси на известные расстояния c1, c2, c3. Для каждого положения точечного объекта автоматически измеряют радиус круга на изображении, после чего рассчитывают значения фокусного расстояния оптической системы ОЭД, а также размеры фоточувствительной области матричного приемника изображения ОЭД и значение радиуса диафрагмы, ограничивающей ход крайнего луча через оптическую систему ОЭД. Технический результат - повышение точности измерений параметров оптической системы и снижение сложности практической реализации способа. 2 ил.

 

Изобретение относится к цифровой обработке изображений и может быть использовано для определения параметров (фокусного расстояния, радиуса диафрагмы и размеры фоточувствительной области матричного приемника изображения) оптических систем оптико-электронного датчика (ОЭД) при разработке и исследовании систем технического зрения.

Известен автоколлимационный способ [МПК7 G02B 1/00, заявка РФ №2000104217, опубл. 10.01.2002] измерения фокусных расстояний отрицательных линз, состоящий в том, что измеряемую линзу размещают соосно между автоколлимационным микроскопом и зеркалом, при двух положениях микроскопа относительно линзы и зеркала получают два автоколлимационных изображения марки и по оси измеряют расстояние между ними. Плоское зеркало сначала располагают в предметной плоскости автоколлимационного микроскопа и в передней фокальной плоскости измеряемой отрицательной линзы одновременно, в результате чего получают первое автоколлимационное изображение марки, снимают отсчет по шкале линейных перемещений; затем, не меняя зеркала и не изменяя расстояния между ним и измеряемой линзой, микроскоп отодвигают от контролируемой линзы по оси до получения второго автоколлимационного изображения марки в точке, удаленной от поверхности зеркала на половину измеряемого фокусного расстояния, снимают отсчет и по разности отсчетов, умноженной на два, определяют искомую величину.

Недостатком этого способа является высокая сложность практической реализации способа измерения фокусного расстояния, вызванная необходимостью использования микроскопа, расположения зеркал в заданных позициях и использования других вспомогательных операций.

Наиболее близким к предлагаемому является способ измерения характеристик оптических систем: фокусных расстояний, фокальных отрезков и децентровки [МПК5 G01M 11/00, патент №2025692, опубл. 30.12.1994], заключающийся в том, что сходящийся пучок света фокусируют вблизи передней фокальной плоскости вспомогательной линзы, устанавливают измеряемую оптическую систему вблизи точки, в которой фокусируется сходящийся пучок света, и измеряют размер сечения пучка света в задней фокальной плоскости вспомогательной линзы, изменяют (во времени или в пространстве) взаимное положение точки, в которой фокусируется сходящийся пучок света, относительно вершины передней поверхности измеряемой системы и измеряют размер сечения пучка света в задней фокальной плоскости вспомогательной линзы, и при сравнении измеренных размеров сечений определяют требуемую характеристику измеряемой оптической системы.

Недостатком данного способа является сложность реализации и низкая точность, необходимость установки оптической системы вблизи точки, в которой фокусируется сходящийся пучок света, необходимость использования вспомогательной линзы, вследствие возможности влияния внешних факторов.

Технической задачей изобретения является повышение точности измерений параметров оптической системы и снижение сложности практической реализации способа.

Задача решается тем, что в известный способ, включающий определение ее фокусного расстояния, введены расположение ОЭД на расстоянии, совпадающем с фокусным расстоянием f оптической системы ОЭД, фокусировка оптической системы ОЭД на бесконечность, размещение тестового точечного объекта на оптической оси, последовательное смещение тестового точечного объекта вдоль оптической оси на известные расстояния c1, c2, c3, для каждого положения точечного объекта автоматическое измерение радиуса круга на изображении, после чего рассчет значения фокусного расстояния оптической системы ОЭД, а также размеров фоточувствительной области матричного приемника изображения ОЭД и значения радиуса диафрагмы.

Изобретение может быть использовано для автоматизированного определения параметров ОЭД, а именно радиуса диафрагмы, размеров фоточувствительной области матричного приемника изображения и фокусного расстояния.

Сущность изобретения поясняется чертежами, где на фиг.1-2 приведены схемы, поясняющие процесс определения параметров оптической системы.

Определение параметров ОЭД производится на основе анализа изображения тестового точечного объекта.

Известно, что точечный объект, находящийся на конечном расстоянии от ОЭД, сфокусированного на бесконечность, проецируется не в точку, а в круг, радиус которого зависит от фокусного расстояния и радиуса диафрагмы [Лотеев М.И., Сизиков B.C. Повышение разрешающей способности измерительных устройств путем компьютерной обработки результатов измерения. Учебное пособие. - Санкт-Петербург: ЛИТМО, 1992. - 58 с.]. Способ заключается в определении параметров ОЭД по дефокусированному изображению точечного объекта.

Любая оптическая система может быть представлена в виде эквивалентной системы, состоящей из линзы и эффективной диафрагмы [Прикладная оптика./ М.И. Апенко, А.С.Дубовик. - М.: Наука, 1971].

На фиг.1 представлена модель ОЭД, в которой приемник изображения расположен на расстоянии, совпадающем с фокусным расстоянием f оптической системы.

Как известно из геометрической оптики, взаимосвязь между фокусным расстоянием f, расстоянием s от линзы до предмета и расстоянием s' от линзы до изображения предмета выражается формулой (направление слева от линзы считают отрицательным, а направление справа - положительным, величины s, s' берут со знаками):

Рассмотрим ход крайнего луча через ОС, ограниченного эффективной диафрагмой радиусом d (фиг.1). Из подобия треугольников OKJ и JML получают:

где σi - радиус круга.

Для определения параметров оптической системы составляют систему уравнений на основе выражений (1), (2). Для составления системы располагают точечный тестовый объект на некотором априори неизвестном расстоянии от ОЭД так, чтобы объект находился на главной оптической оси. Затем смещают объект вдоль главной оптической оси на известные расстояния c1, c2, c3. Для каждого положения точечного объекта автоматически измеряют радиус круга на изображении в пикселях. Измерение радиуса круга производят путем выделения его контура дифференциальными методами [Методы компьютерной обработки изображений / Под ред. В.А.Сойфера. - М.: Физматлит. - 2001] и измерения радиуса полученной окружности. По измеренным величинам σ1, σ2, σ3, σ4 определяют коэффициенты k1, k2, k3:

Составляют систему уравнений:

В результате решения системы определяют фокусное расстояние f и находят функциональную зависимость между радиусом диафрагмы d и радиусом круга σ1:

При этом фокусное расстояние, определяемое по формуле (5), выражается в метрах, т.к. переменные c1, c2, c3 выражены в метрах, а коэффициенты k1, k2, k3 являются безразмерными. Вследствие того что σ1 по изображению может быть измерена только в пикселях, то и радиус диафрагмы d может быть определен по формуле (6) только в пикселях. Для определения радиуса d в метрах проводят дополнительные измерения: тестовый точечный объект смещают в направлении, перпендикулярном главной оптической оси, на известную величину h (фиг.2). Подобие треугольников РМО и OJN (фиг.2) позволяет установить зависимость между g и h и определить g в метрах, а измерение величины g по изображению как координат центра изображения тестового объекта позволяет определить g[пк] в пикселях. Определяют g по формуле:

Находят расстояние между центром кадра и центром изображения тестового объекта g и рассчитывают радиус круга по формуле:

kмп=g[пк]/g,

где kмп - коэффициент пропорциональности метров и пикселей.

После нахождения коэффициента kмп становится возможным определение радиуса диафрагмы d по формуле (6) путем подстановки в формулу (6) значения радиуса круга, определенного по формуле (8), и размера фоточувствительной области матричного приемника изображения LxxLy:

Lx=X/kмп,

Ly=Y/kмп,

где X, Y - размеры изображения, формируемого ОЭД.

Таким образом, изобретение позволяет автоматизированно определять параметры оптических систем, а именно фокусного расстояния, радиуса диафрагмы и размера фоточувствительной области матричного приемника изображения, с целью повышения точности измерений с использованием ОЭД.

Способ измерения параметров оптической системы, включающий определение ее фокусного расстояния, отличающийся тем, что при определении фокусного расстояния оптической системы оптико-электронного датчика (ОЭД) матричный приемник изображения ОЭД располагают на расстоянии, совпадающем с фокусным расстоянием f оптической системы ОЭД, фокусируют оптическую систему ОЭД на бесконечность, размещают тестовый точечный объект на оптической оси, последовательно смещают тестовый точечный объект вдоль оптической оси на известные расстояния c1, c2, c3, для каждого положения точечного объекта автоматически измеряют радиус круга на изображении, после чего рассчитывают значения фокусного расстояния оптической системы ОЭД, а также размеры фоточувствительной области матричного приемника изображения ОЭД и значение радиуса диафрагмы, ограничивающей ход крайнего луча через оптическую систему ОЭД.



 

Похожие патенты:

Изобретение относится к области оптических информационных технологий, к методам диагностики динамических параметров оптических волноведущих систем и позволяет определять скорость передачи импульсно-кодовой или аналоговой информации (полосу пропускания).

Изобретение относится к вычислительной технике и может быть использовано для коррекции сферической аберрации объектива оптико-электронного датчика (ОЭД) при разработке и исследовании систем технического зрения.

Изобретение относится к вычислительной технике и может быть использовано для определения коэффициентов сферической аберрации объектива оптико-электронного датчика (ОЭД) при разработке и исследовании систем технического зрения.

Изобретение относится к технической физике, более конкретно, к фотометрии, и может быть использовано при создании технологии инструментальной оценки параметров качества авиационных оптико-электронных средств (ОЭС) и систем дистанционного зондирования (ДЗ) на основе методов автоматизированной обработки и анализа изображений наземных мир, полученных ОЭС в натурных условиях, а также в разработках конструкций наземных мир видимого и инфракрасного диапазонов электромагнитного спектра.

Изобретение относится к оптике и может быть использовано для определения коэффициента комы оптической системы оптико-электронного датчика. .

Изобретение относится к вычислительной технике и может быть использовано для определения и коррекции дисторсии оптических подсистем видеокамер и систем технического зрения, использующих в качестве приемников изображения матричные приемники изображения.

Изобретение относится к оптическому приборостроению и может быть использовано для технологического и аттестационного контроля качества объективов оптических приборов.

Изобретение относится к оптическому приборостроению и может быть использовано для измерения коэффициентов отражения, близких к единице, различных зеркал. .

Изобретение относится к области оптического приборостроения, в частности к преобразователям оптического излучения, преобразователям теплового изображения в кристаллах, приборам для измерения оптических характеристик в зависимости от оптического знака кристалла

Изобретение относится к вычислительной технике и может быть использовано для определения и коррекции дисторсии оптических подсистем видеокамер и систем технического зрения, использующих матричные приемники изображения

Изобретение относится к вычислительной технике и может быть использовано как для нахождения областей изображения, искаженных коматической аберрацией, так и для коррекции коматической аберрации оптической системы оптико-электронного датчика

Изобретение относится к средствам измерения и может быть использовано для выявления центров диффузного рассеяния светового потока в оптических носителях информации, в частности для выявления царапин поверхностного слоя микрофильма

Изобретение относится к оптическому приборостроению и может быть использовано для контроля параметров двухканального лазерного прибора

Изобретение относится к области измерительной техники, техники связи и оптоэлектроники и может быть использовано для диагностики волоконно-оптических трактов при производстве оптических волокон и волоконно-оптических кабелей, при прокладывании и эксплуатации волоконно-оптических линий связи

Изобретение относится к области материаловедения по исследованию нелинейных оптических материалов

Изобретение относится к области измерительной техники, техники связи и оптоэлектроники и может быть использовано для диагностики волоконно-оптических трактов при производстве оптических волокон и волоконно-оптических кабелей, при прокладывании и эксплуатации волоконно-оптических линий связи

Изобретение относится к области оптического приборостроения
Наверх