Способ получения регенерируемого поглотителя диоксида углерода

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода для очистки атмосферы от диоксида углерода герметичных объектов, для создания контролируемой газовой среды в плодоовощехранилищах, для очистки атмосферного воздуха в топливных элементах. Способ заключается во взаимодействии основного карбоната циркония и вещества, образующего гидроксид циркония. При этом в качестве вещества, образующего гидроксид циркония, используют оксиды и/или гидроксиды щелочных и щелочно-земельных металлов, а именно оксид магния, оксид кальция, гидроксид лития, гидроксид магния, гидроксид кальция, гидроксид бария. Изобретение позволяет упростить технологию изготовления поглотителя и снизить его себестоимость за счет сокращения количества используемых в процессе реагентов и уменьшения количества операций способа. 7 з.п. ф-лы, 1 табл.

 

Изобретение относится к способу получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония и может быть использовано в технологии получения регенерируемых поглотителей диоксида углерода для очистки атмосферы от диоксида углерода герметичных объектов, для создания контролируемой газовой среды в плодоовощехранилищах, для очистки атмосферного воздуха в топливных элементах и других областях техники, где необходимо получение газов, свободных от диоксида углерода.

Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, основанный на взаимодействии растворов солей циркония: оксихлоридов, оксинитратов или нитратов, с растворами гидроксидов щелочных металлов или аммиаком (Бойчинова Е.С. Автореферат диссертации «Иониты и окислительно-восстановительные полимеры на основе циркония». Л.: ЛТИ им. Ленсовета, 1973 г.).

Способ заключается во взаимодействии разбавленных солей циркония (нитрат оксициркония и хлорид циркония) с растворами гидроокиси натрия, калия, цезия и аммония.

Известен способ получения регенерируемого поглотителя диоксида углерода на основе гидроксида циркония, основанный на взаимодействии растворов солей циркония с растворами щелочей (АС СССР №865381, МКИ B01J 20/06, 1981 г.). Способ состоит в следующем.

Готовят растворы азотнокислого цирконила и растворы щелочи (КОН или NaOH). Крепкий 3-4 н. раствор азотнокислого цирконила вводят при перемешивании в 8-20 н. раствор щелочи. Образующийся осадок гидроксида циркония отделяют от маточного раствора, сушат при температуре 50-60°С, обрабатывают раствором щелочи, промывают водой до отрицательной реакции на анионы, сушат.

Для получения гранул порошок подвергают формованию известными способами.

Недостатками обоих известных способов являются трудоемкость изготовления, заключающаяся в большом количестве операций, и использование дорогостоящих солей циркония оксихлоридов и оксинитратов.

Известен способ получения регенерируемого поглотителя диоксида углерода из влажной атмосферы герметичных объемов на основе гидратированной двуокиси циркония (АС СССР №643431, МКИ C01G 25/02, 1979 г.) взаимодействием соли циркония и вещества, образующего гидроксид циркония. Способ заключается во взаимодействии раствора азотнокислого цирконила с раствором едкого натра с последующей отмывкой и сушкой продукта. Для повышения дисперсности и сорбционной емкости по диоксиду углерода исходные растворы берут с концентрацией азотнокислого цирконила 3-4 н. и едкого натра 8-20 н., осадок перед отмыванием и сушкой подвергают дополнительным операциям сушки при 50-60°С и обработки раствором едкого натра, взятым в количестве 20-50% от первоначального. Полученный тонкодисперсный порошок формуют в гранулы на любом грануляторном устройстве.

Однако этот способ характеризуется большой трудоемкостью, обусловленной многостадийностью процесса и необходимостью операций отмывки образующейся гидратированной двуокиси циркония от анионов, а также использованием большого количества реагентов на единицу конечного продукта.

Задачей изобретения является упрощение технологии изготовления поглотителя и снижение его себестоимости.

Техническим результатом изобретения является сокращение количества используемых в процессе реагентов и уменьшение количества операций способа.

Технический результат достигается тем, что в способе получения регенерируемого поглотителя диоксида углерода, включающем взаимодействие соли циркония и вещества, образующего гидроксид циркония, в качестве соли циркония используют основной карбонат циркония, а в качестве вещества, образующего гидроксид циркония, используют оксиды и/или гидроксиды щелочных и щелочно-земельных металлов.

Оксидами и/или гидроксидами щелочных и щелочно-земельных металлов могут быть оксид магния (MgO), оксид кальция (СаО), гидроксид лития (LiOH), гидроксид магния (Mg(OH)2), гидроксид кальция (Са(ОН)2), гидроксид бария (Ва(ОН)2).

Изменение типа исходных компонентов в способе получения поглотителя диоксида углерода позволяет, во-первых, исключить операцию приготовления исходных растворов, так как указанные компоненты взаимодействуют в твердой фазе, во-вторых, исключить операцию отмывки от анионов, так как анионом является ион карбоната, который взаимодействует с исходными компонентами, а избыток удаляется в виде газовой фазы. Кроме того, образующиеся карбонаты щелочных и щелочноземельных металлов являются структурирующей добавкой, улучшающей диффузионные характеристики конечного продукта. При этом адсорбционно-десорбционные свойства конечного продукта не ухудшаются.

Наряду с этим используемые компоненты имеют более низкую стоимость, чем нитраты и хлориды циркония (в частности, в настоящее время стоимость оксинитрата циркония 2400 руб./кг, оксихлорида циркония 2700 руб./кг, основного карбоната циркония 230 руб./кг).

Способ осуществляется следующим образом.

Смешивают порошок основного карбоната циркония и порошок одного из следующих веществ: окиси или гидроокиси магния, окиси или гидроокиси кальция, гидроокиси бария, гидроокиси лития, при мольном соотношении металла к цирконию от 1:0,5 до 1:2,0. Смешение осуществляют в любом пригодном для смешения порошкообразных материалов, например в двухлопастном смесителе, в течение 1,0-1,5 часов.

В процессе смешения компоненты взаимодействуют друг с другом с образованием твердой фазы гидроксида циркония.

Полученный продукт смешивают с обычным связующим, например поливиниловым спиртом или поливинилацетатной эмульсией, в количестве 1-3% в расчете на сухие вещества.

Затем осуществляют формование гранул любым известным способом (шнекование, таблетирование, закатка), полученные гранулы рассеивают и подвергают сушке при температуре 20-110°С.

При смешении порошка основного карбоната циркония и порошков, вышеупомянутых веществ, протекает твердофазная химическая реакция с образованием гидроксида циркония и карбонатов вышеупомянутых веществ.

Например:

ZrO(OH)CO3+Са(ОН)2=ZrO(OH)2+СаСО3,2O

ZrO(OH)CO3+Ва(ОН)2=ZrO(OH)2+ВаСО3,2О

ZrO(ОН)СО3+Mg(OH)2=ZrO(OH)2+MgCO3,2O

ZrO(ОН)СО3+MgO+Н2O=ZrO(OH)2+MgCO3,

ZrO(ОН)СО3+CaO+Н2O=ZrO(OH)2+СаСО3,

ZrO(ОН)СО3+LiOH=ZrO(OH)2+LiCO3

Образующиеся карбонаты металлов являются высокодисперсными, нерастворимыми в воде веществами. Они оказывают структурирующее действие, улучшают кинетические характеристики поглотителя и повышают стабильность работы поглотителя в циклических условиях.

Пример 1

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 43 г Са(ОН)2, перемешивают в течение 60 мин, добавляют 15,26 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 2

250 г основного карбоната циркония, содержащего 0,87 моль ZiO2., смешивают с 51,5 г Са(ОН)2, перемешивают в течение 40-60 мин, добавляют 37,06 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 3

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 275 г Ва(ОН)22O, перемешивают в течение 40-60 мин, добавляют 97,9 г 5% раствора поливинилового спирта, перемешивают в течении 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 4

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 220,5 г Ва(ОН)2·8Н2О, перемешивают в течение 60 мин, добавляют 85,7 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 5

200 г основного карбоната циркония, содержащего 0,7 моль ZrO2, смешивают с 38,5 г Mg(OH)2, перемешивают в течение 60 мин, добавляют 40,0 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 6

200 г основного карбоната циркония, содержащего 0,7 моль ZrO2, смешивают с 82,0 г Mg(OH)2, перемешивают в течение 60 мин, добавляют 35,5 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 7

250 г основного карбоната циркония, содержащего 0,87 моль ZiO2, смешивают с 23,5 г MgO, перемешивают в течение 60 мин, добавляют 30,5 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 8

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 31,5 г MgO, перемешивают в течение 60 мин, добавляют 43,5 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 9

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 25,2 г СаО, перемешивают в течение 60 мин, добавляют 45,6 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 10

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 30,5 г СаО, перемешивают в течение 60 мин, добавляют 40,56 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 11

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 453 мл 4,4% раствора LiOH, перемешивают в течение 40 мин, пасту подсушивают при 80°С до сухого состояния, добавляют 50,06 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Пример 12

250 г основного карбоната циркония, содержащего 0,87 моль ZrO2, смешивают с 758 мл 4,4% раствора LiOH перемешивают в течение 40 мин, пасту подсушивают при 80°С до сухого состояния добавляют 25,13 г 5% раствора поливинилового спирта, перемешивают в течение 20 мин, формуют гранулы путем продавливания через фильеры диаметром 2 мм, гранулы сушат при температуре (50-80)°С, рассеивают на ситах, отбирают фракцию 1,5-2,0 мм.

Испытания полученного заявляемым способом регенерируемого поглотителя диоксида углерода осуществлялись на установке, имитирующей условия работы поглотителя для очистки воздуха герметичного объекта, регенерация поглотителя осуществлялась продувкой водяным паром.

Условия проведения испытаний:

- объем навески поглотителя 150 см3;

- расход воздуха через слой поглотителя (16±1) л/мин;

- объемная доля диоксида углерода в газовоздушной среде (0,3±0,02)%;

- температура газовоздушной среды (20-65)°С;

- относительная влажность воздуха (30-80)%.

Результаты испытаний поглотителей представлены в таблице.

Таблица
Примеры полученияСоотношение Me/ZrДинамическая активность по CO2, л/л
По примеру 11/1,54,4
По примеру 21/1,245,3
По примеру 31/15,4
По примеру 41/1,245,8
По примеру 51/1,045,2
По примеру 61/1,46,1
По примеру 71/25,3
По примеру 81/16,3
По примеру 91/27,2
По примеру 101/1,66,6
По примеру 111/1,054,7
По примеру 121/0,626,4

Изобретение позволяет повысить технологичность процесса изготовления поглотителя диоксида углерода без ухудшения сорбционных характеристик поглотителя.

1. Способ получения регенерируемого поглотителя диоксида углерода, включающий взаимодействие соли циркония и вещества, образующего гидроксид циркония, отличающийся тем, что в качестве соли циркония используют основной карбонат циркония, а в качестве вещества, образующего гидроксид циркония, используют оксиды и/или гидроксиды щелочных и щелочно-земельных металлов.

2. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют гидроксид кальция.

3. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют гидроксид бария.

4. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют гидроксид магния.

5. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют гидроксид лития.

6. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют оксид кальция.

7. Способ по п.1, отличающийся, тем, что в качестве вещества, образующего гидроксид циркония, используют оксид магния.

8. Способ по п.1, отличающийся, тем, что взаимодействие компонентов осуществляют при мольном соотношении металла и циркония от 1:0,5 до 1:2,0.



 

Похожие патенты:
Изобретение относится к сорбентам для фильтрации жидкостей и может быть использовано в комплексной очистке воды от примесей тяжелых металлов. .
Изобретение относится к разработке сорбентов сероочистки и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. .
Изобретение относится к составам сорбентов для удаления серы из крекинг-бензина и дизельного топлива. .

Изобретение относится к золь-гель технологии получения сорбентов на основе гидратированного диоксида циркония, включающей в себя следующие стадии: электролиз раствора хлорида циркония с получением золя гидроксида циркония, введение в золь гидроксида циркония водорастворимого органического катионного полимера, имеющего положительный заряд или неионного полимера, не имеющего заряда, диспергирование смешанного золя в гелирующую среду с образованием гель-сфер, их отмывку и сушку.
Изобретение относится к способам получения сорбентов на основе гелей оксигидратов металлов и может быть использовано в сорбционных технологиях извлечения металлов из технологических растворов, очистки сточных вод гидрометаллургических предприятий, получения особо чистых веществ в химической промышленности.

Изобретение относится к составу ионообменника - сорбента на основе гидратированного диоксида циркония. .
Изобретение относится к способам водоподготовки питьевой воды, а именно к очистке воды от марганца и железа, и может быть использовано на доочистке скважинной воды.

Изобретение относится к технике очистки загрязненного воздуха от газообразных и твердых аэрозольных вредных веществ. .
Изобретение относится к области защиты окружающей среды от токсичных компонентов отходящих газов, а именно к катализатору, способу приготовления катализатора для окислительной очистки газов от углеводородов и монооксида углерода.

Изобретение относится к катализаторам окисления оксида углерода (II), перспективным для очистки от него отходящих газов. .
Изобретение относится к катализаторам окисления оксида углерода (II), перспективным для очистки от него отходящих газов. .
Изобретение относится к области комплексной очистки различных газообразных выбросов промышленных производств и может быть использовано, в частности, для полного улавливания токсичных газов, таких как NOx, SO2, CO из дымовых газов топливосжигающих установок и газовых выбросов технологических агрегатов.

Изобретение относится к области хемосорбционно-каталитической очистки биогаза. .
Изобретение относится к катализаторам глубокого окисления оксида углерода и может быть использовано для очистки отходящих газов промышленных предприятий и выхлопных газов автотранспорта.
Изобретение относится к катализаторам глубокого окисления оксида углерода и может быть использовано для очистки отходящих газов промышленных предприятий и выхлопных газов автотранспорта.
Изобретение относится к области очистки воздуха, в частности касается катализатора для очистки воздуха от монооксида углерода. .
Изобретение относится к области химической очистки отработанных газов. .

Изобретение относится к теплоэнергетике и может быть использовано в процессе очистки и утилизации дымовых газов теплоэнергетических установок
Наверх