Микроканальный лавинный фотодиод

Изобретение может быть использовано для регистрации сверхслабых импульсов света, вплоть до единичных фотонов, а также гамма-квантов и заряженных частиц в составе устройств медицинской гамма-томографии, радиационного мониторинга и ядерно-физических экспериментов. Предложенный лавинный фотодиод содержит подложку и полупроводниковые слои с разными электрофизическими свойствами, имеющие общие границы раздела как между собой, так и с подложкой. Кроме того, лавинный фотодиод содержит, по крайней мере, одну двумерную матрицу отдельных твердотельных областей, окруженных полупроводниковым материалом одного типа проводимости. Твердотельные области располагают между двумя дополнительными полупроводниковыми слоями, имеющими повышенную проводимость по отношению к полупроводниковым слоям, с которыми они имеют общие границы раздела. Благодаря этому улучшается стабильность амплитуды фотоотклика и увеличивается чувствительность лавинного фотодиода в видимой и ультрафиолетовой областях спектра. 3 з.п. ф-лы, 1 ил.

 

Описание изобретения

Изобретение относится к полупроводниковым фоточувствительным приборам, конкретно к полупроводниковым лавинным фотодиодам с внутренним усилием сигнала. Предложенный микроканальный лавинный фотодиод может быть использован для регистрации сверхслабых импульсов света, вплоть до единичных фотонов, а также гамма-квантов и зараженных частиц в составе устройств медицинской гамма-томографии, радиационного мониторинга и ядерно-физических экспериментов.

Известно устройство /1/, включающее полупроводниковую подложку, матрицу полупроводниковых областей противоположного подложке типа проводимости, отделенных от полевого полупрозрачного электрода буферным-резистивным слоем с определенной проводимостью. Лавинное усиление фотоэлектронов осуществляется на границах подложки с полупроводниковыми областями. При этом лавинный ток стекает к полупрозрачному электроду через резистивный слой, расположенный над этими областями. Недостатком устройства является низкий квантовый выход в видимой и ультрафиолетовой областях спектра ввиду низкой прозрачности как буферного слоя, так и высоколегированных полупроводниковых областей. Кроме того, фотоэлектроны, образованные между полупроводниковыми областями, не имеют возможности усиливаться, что приводит к понижению чувствительности устройства.

Известно устройство /2/, включающее полупроводниковую подложку n-типа проводимости и эпитаксиальный слой p-типа проводимости, отделенный от подложки резистивным и диэлектрическим слоями. Внутри диэлектрического слоя сформированы отдельно стоящие полупроводниковые области n-типа проводимости, имеющие выход с одной стороны на резистивный слой, а с противоположной стороны на эпитаксиальный слой. Высоколегированные области n-типа проводимости обеспечивают локализацию лавинного процесса в p-n-переходах, отделенных друг от друга областями диэлектрического слоя. Фоточувствительным слоем, в котором создаются фотоэлектроны, является эпитаксиальный слой, выращенный на поверхности инородных материалов - диэлектрических и резистивных слоев. Поэтому основными недостатками устройства являются сложность технологии изготовления таких эпитаксиальных слоев и высокий уровень темнового тока, приводящего к ухудшению чувствительности и отношения сигнал/шум устройства.

Известно также устройство /3/, взятое за прототип, включающее полупроводниковую подложку и полупроводниковый слой, образующий с подложкой p-n переход. На поверхности подложки содержится матрица отдельных полупроводниковых областей с повышенной проводимостью по отношению к подложке. Полупроводниковые области используются в прототипе с целью создания отдельных лавинных областей (микроканалов), обеспечивающих усиление сигнала. Недостатком устройства является присутствие, а также образование при эксплуатации локальных неуправляемых микропробоев в приграничной зоне полупроводниковых областей, где производится усиление фотоэлектронов. Дело в том, что полупроводниковые области расположены непосредственно на границе раздела p-n перехода, образованного на границе раздела подложка-полупроводниковый слой. Поэтому полупроводниковые области имеют зарядовую и токовую связь между собой или через электронейтральную часть полупроводникового слоя, или же через подложку в зависимости от их типа проводимости. То есть в устройстве не осуществляется локальное ограничение тока в отдельных областях, где происходит лавинный процесс. Одна или несколько областей с пониженным потенциалом пробоя не позволяют поднять напряжения на приборе с целью достижения высокого уровня лавинного процесса на всей площади устройства. Таким образом, в устройстве ограничен коэффициент усиления лавинного процесса, являющийся показателем уровня чувствительности лавинного фотодиода.

Предложенное изобретение направлено на улучшение стабильности амплитуды сигнала и увеличение чувствительности лавинного фотодиода в видимой и ультрафиолетовой областях спектра. Для достижения этих технических результатов в лавинном фотодиоде, включающем полупроводниковую подложку и полупроводниковые слои с разными электрофизическими параметрами, формируют, по крайней мере, одну матрицу, состоящую из отдельных твердотельных областей с повышенной проводимостью, окруженных со всех сторон полупроводниковым материалом одного типа проводимости. Твердотельные области расположены между двумя дополнительными полупроводниковыми слоями, имеющими повышенную проводимость по отношению к полупроводниковым слоям, с которыми они имеют общую границу раздела. При этом, по крайней мере, один из дополнительных полупроводниковых слоев с повышенной проводимостью не имеет общей границы раздела с твердотельными областями. Полупроводниковые области располагают вдоль общей границы раздела полупроводниковых слоев.

В зависимости от варианта исполнения устройства твердотельные области с повышенной проводимостью формируют из одинакового с полупроводниковыми слоями материала, но с разными типами проводимости, из узкозонного полупроводника по отношению к материалу полупроводниковых слоев, а также из металлического материала. Это приводит к образованию в устройстве, соответственно, либо чередующихся p-n-переходов, или гетеропереходов, или же переходов металл-полупроводник в направлении, перпендикулярном к плоскости подложки.

В результате этого в устройстве образуется, по крайней мере, одна двумерная матрица отдельных потенциальных ям, расположенных между дополнительными полупроводниковыми слоями с повышенной проводимостью. Формирование двух и более матриц отдельных твердотельных областей с повышенной проводимостью приводит к большему улучшению чувствительности и стабильности амплитуды сигнала устройства.

Изобретение иллюстрируется чертежом, на котором показаны поперечные сечения микроканального лавинного фотодиода с одним (А) и двумя (С) матрицами твердотельных областей, расположенных между дополнительными полупроводниковыми слоями с повышенной проводимостью. Устройство изготавливают на базе полупроводниковой подложки 1, например, кремния n-типа проводимости с удельным сопротивлением 1 Ом·см. Сначала в рабочей области полупроводниковой подложки формируют первый дополнительный полупроводниковый слой 2 n-типа проводимости с удельным сопротивлением 0,1 Ом·см путем локального диффузионного легирования фосфором. Затем на поверхности подложки путем молекулярной эпитаксии выращивают кремниевый полупроводниковый слой 3 p-типа проводимости с удельным сопротивлением в интервале 1-100 Ом·см, образующий p-n-переход с первым дополнительным полупроводниковым слоем. Твердотельные области с повышенной проводимостью 4 формируют путем ионного легирования полупроводникового слоя атомами фосфора. Дозу легирования выбирают в интервале 5-100 мкКл·см-2. После отжига дефектов при температуре 900°С внутри полупроводникового слоя образуются области - островки n-типа проводимости с удельным сопротивлением около 0,01 Ом·см, окруженные со всех сторон полупроводниковым материалом p-типа проводимости с удельным сопротивлением в интервале 1-100 Ом·см. Затем путем ионного легирования бором на поверхности полупроводникового слоя 3 формируют второй дополнительный полупроводниковый слой 5 с удельным сопротивлением около 0,01 Ом·см. Это приводит к образованию в объеме устройства чередующихся p-n-переходов в направлении 6, перпендикулярном к плоскости подложки, причем чередующиеся p-n-переходы расположены между двумя дополнительными полупроводниковыми слоями с повышенной проводимостью.

В зависимости от варианта исполнения устройства твердотельные области с повышенной проводимостью формируют также из германиевых или титановых кластеров, окруженных кремниевым материалом. Для того чтобы образовалиь германиевые или титановые кластеры в объеме полупроводникового слоя из кремния дозу легирования германием или титаном выбирают выше 1000 мкКл·см-2. При этом в устройстве образуются, соответственно, или чередующиеся гетеропереходы, или же переходы металл-полупроводник в направлении, перпендикулярном к плоскости подложки.

Поперечные размеры твердотельных областей и зазор между ними определяются специальным фотошаблоном, с помощью которого вскрывают окна в фоторезисте либо в специальной маске для локального легирования полупроводникового слоя. Энергию ионов при легировании выбирают в зависимости от необходимой глубины залегания внедряемых атомов. Затем изготавливают известные элементы устройства, такие как охранные кольца или глубокие канавки вокруг рабочей площади, а также контактные электроды.

В отличие от прототипа в предлагаемом устройстве лавинное усиление фототока происходит только в границах твердотельных областей с полупроводниковыми слоями, представляющих собой независимые каналы умножения носителей заряда, совпадающие направлением 6. Это происходит благодаря тому, что области чередующихся потенциальных барьеров в направлении 6 окружены областями p-n-перехода, расположенными в направлении 7. В рабочем режиме к верхнему электроду полупроводникового слоя прикладывается напряжение полярностью, соответствующей обеднению полупроводниковой подложки от основных носителей заряда. При этом средний переход в канале умножения смещается в прямом направлении, а два внешних перехода - в противоположном направлении. Области p-n-перехода, расположенные между каналами умножения, также смещаются в противоположном направлении. При этом первый дополнительный полупроводниковый слой с повышенной проводимостью ограничивает распространение электрического поля в подложку, тем самым он обеспечивает уменьшение темнового генерационного тока и достижение лавинного процесса только в рабочей области устройства. Второй дополнительный полупроводниковый слой с повышенной проводимостью ограничивает электрическое поле с внешней стороны и обеспечивает однородность потенциала вдоль фоточувствительной поверхности устройства. В результате этого достигается такая форма распределения потенциала внутри устройства, которая способствует сбору фотоэлектронов, образованных в верхнем фоточувствительном полупроводниковом слое, к потенциальным микроямам, образованным твердотельными областями. Усиление фотоэлектронов производится в первом сверху переходе канала умножения, а следующий переход, смещенный в прямом направлении, выполняет роль потенциальной ямы глубиной около 0,5-1 В, в которой собираются умноженные электроны. Накопление электронов в упомянутой потенциальной яме за время нескольких наносекунд приводит к резкому понижению электрического поля в лавинной области (т.е. в приграничной области первого перехода), и в результате этого лавинный процесс в данном канале умножения прекращается. Затем за время нескольких десятков наносекунд после окончания лавинного процесса накопленные электроны уходят в подложку благодаря достаточной утечке третьего перехода. Таким образом, лавинное усиление фотоэлектронов осуществляется в независимых каналах умножения, не имеющих зарядовой связи между собой. Благодаря этому улучшается стабильность работы и увеличивается чувствительность лавинного фотодиода.

Источники информации

1. Гасанов А.Г. и др. Патент РФ №1702831 от 27 июня 1997 года. Заявка 4747595/25 от 11 октября 1989 года (аналог).

2. Antich P.P. et al. US Patent #5844291 from December 1, 1998, Class: H 01 L 31/107; H01L 31/06. Application #771207 from December 10, 1996 (аналог).

3. Садыгов З.Я. Патент России №2102821 от 20 января 1998 года, кл. H01L 31/06. Заявка №96119670 от 10 октября 1996 года (прототип).

1. Лавинный фотодиод, содержащий подложку и полупроводниковые слои с разными электрофизическими свойствами, имеющие общие границы раздела как между собой, так и с подложкой, отличающийся тем, что в устройстве содержится, по крайней мере, одна матрица, состоящей из отдельных твердотельных областей с повышенной проводимостью, окруженных полупроводниковым материалом одного типа проводимости, причем твердотельные области расположены между двумя дополнительными полупроводниковыми слоями, имеющими повышенную проводимость по отношению к полупроводниковым слоям, с которыми они имеют общие границы раздела.

2. Лавинный фотодиод по п.1, отличающийся тем, что твердотельные области сделаны из одинакового материала с окружающими их полупроводниковыми слоями, но с противоположным по отношению к ним типом проводимости.

3. Лавинный фотодиод по п.1, отличающийся тем, что твердотельные области сделаны из полупроводника с узкой запрещенной зоной по отношению к полупроводниковым слоям, с которыми они имеют общие границы раздела.

4. Лавинный фотодиод по п.1, отличающийся тем, что твердотельные области сделаны из металлического материала.



 

Похожие патенты:

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для видеокамер и цифровой фотографии.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для однокристальных цифровых видеокамер и цифровой фотографии.

Изобретение относится к полупроводниковым фоточувствительным приборам с внутренним усилием сигнала. .

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например для видеокамер и цифровой фотографии.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников. .

Изобретение относится к полупроводниковым приборам, в частности к детекторам с высокой эффективностью регистрации светового излучения, в том числе видимой части спектра, и может быть использовано в ядерной и лазерной технике, а также в технической и медицинской томографии и т.п.

Изобретение относится к области микроэлектроники, а именно к полупроводниковым приемникам, и может быть использовано для регистрации излучения различных диапазонов спектра и заряженных частиц.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для видеокамер и цифровой фотографии.
Изобретение относится к области полупроводниковой фотоэлектроники и предназначено для регистрации светового излучения коротких световых сигналов малой интенсивности.

Изобретение относится к технике машинного зрения и может быть использовано в высокочувствительных видеокамерах и фотоаппаратах, в частности для регистрации трехмерных изображений

Изобретение относится к области светоизлучающих устройств, в частности к высокоэффективным светоизлучающим диодам на основе нитридов элементов третьей группы Периодической системы химических элементов Д.И.Менделеева и их твердых растворов (далее - III-нитриды)

Способ изготовления солнечного элемента содержит этапы формирования pn-перехода в полупроводниковой подложке, формирования пассивирующего слоя на светопринимающей поверхности и/или не принимающей свет поверхности полупроводниковой подложки и формирования электродов отбора мощности на светопринимающей поверхности и не принимающей свет поверхности. В качестве пассивирующего слоя формируют пленку оксида алюминия, имеющую толщину до 40 нм, при этом электрод формируют обжигом проводящей пасты при 500-900°C в течение от 1 секунды до 30 минут с образованием спеченного продукта, который проникает через пассивирующий слой, устанавливая электрический контакт между электродом и подложкой. В результате формирования пленки оксида алюминия с заданной толщиной на поверхности подложки можно добиться превосходных характеристик пассивации и превосходного электрического контакта между кремнием и электродом лишь путем обжига проводящей пасты, что является обычной технологией. Кроме того, этап отжига, который был необходим для достижения эффектов пассивации пленки оксида алюминия в прошлом, может быть устранен, резко снижая расходы. 5 з.п. ф-лы, 7 ил.

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO2, полупроводниковые квантовые точки и органический краситель, и заключается в том, что для уменьшения толщины слоя КТ, адсорбированных на поверхность TiO2, вводится технологический этап предварительного удаления избыточного количества молекул солюбилизатора полупроводниковых квантовых точек из раствора и частично с поверхности квантовых точек. Это позволяет избежать самообразования дендритных структур на поверхности мезопористого TiO2 и приводит к формированию тонких слоев квантовых точек на поверхности мезопористого TiO2, обеспечивающих условия для высокоэффективного переноса заряда. Соответственно увеличивается эффективность преобразования энергии в фотовольтаической ячейке. 6 ил.

Изобретение может быть использовано для создания устройств, различного назначения, например, датчиков пламени; датчиков электрической искры; оптической локации в УФ-спектре; оптической связи в УФ-диапазоне; дозиметрии УФ-излучения, быстродействующих УФ-фотоприемников для эксимерных лазеров; приборов контроля люминесценции в УФ-спектре; флуоресцентной спектрометрии; приборов ночного видения и т.п. Приемник электромагнитного излучения включает полупроводниковую структуру с электронно-дырочным переходом на основе арсенида галлия и внешние электроды, упомянутый электронно-дырочный переход выполнен компенсирующей глубокой примесью хрома с неоднородным по толщине слоя арсенида галлия распределением примеси, причем в приповерхностной области полупроводниковой структуры сформирована область с концентрацией хрома, превышающей концентрацию доноров в исходном арсениде галлия, а во внутреннем объеме полупроводниковой структуры сформирована область с концентрацией хрома меньше, чем концентрация доноров в исходном арсениде галлия. Изобретение обеспечивает расширение спектрального диапазона работы фотоприемного устройства от инфракрасного излучения до вакуумного ультрафиолета. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к полупроводниковым приборам, чувствительным к свету. Гетероструктура содержит подложку, выполненную из AlN, на которой размещено три сопряженных друг с другом выполненных из In1-xGaxN двухслойных компонентов с p-n-переходами между слоями. Двухслойные компоненты сопряжены между собой туннельными переходами. Ширина запрещенной зоны компонентов возрастает в направлении к поверхности, предназначенной для облучения солнечной энергией. Между подложкой и смежным с подложкой двухслойным компонентом предусмотрены релаксационные слои, выполненные из твердых растворов металлов третьей группы. Релаксационные слои позволяют уменьшить рассогласование кристаллической решетки подложки и двухслойных компонентов. Ширина запрещенной зоны двухслойных компонентов удовлетворяет соотношению: Eg1:Eg2:Eg3=1:2,23:3,08, где 0,65≤Eg1≤0,85. Благодаря такому соотношению параметров двухслойных компонентов солнечная энергия поглощается во всем диапазоне спектра солнечного излучения, что позволяет повысить эффективность преобразования солнечной энергии в электрическую. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение может быть использовано в космических летательных аппаратах и автономных системах, как высокопроизводительное экологически чистое средство получения электрической энергии в различных областях промышленности. Однопереходной солнечный элемент включает р-кремниевую подложку из кремния p-типа Si(100) предварительно обработанную кислотой HF. На верхней стороне подложки расположен слой пленки n-типа толщиной 4-5 нм из аморфного нитрида кремния смешанного с нитридом кремния нанокристаллической структуры, нанесенный методом магнетронного напыления в аргоне из твердотельной мишени Si3N4. Электрические контакты сформированы методом магнетронного напыления. При этом, на верхней стороне элемента контакты выполнены из Ag в виде гребенки. А электрический тыльный контакт, расположенный на обратной стороне подложки Si(100), выполнен из Ag либо Cu. Изобретение обеспечивает эффективность 7.41% без дополнительных просветляющих, защитных или каких либо других слоев и без применения концентраторов солнечного излучения. 9 ил.

Использование: для изготовления покрытия фотовольтаической ячейки. Сущность изобретения заключается в том, что покрытие для фотовольтаической ячейки выполнено в виде слоев толщиной 10-100 нм из углеродных наноматериалов и оксида олова (IV). Технический результат: обеспечение возможности расширения арсенала покрытий для фотовольтаической ячейки с низким электросопротивлением при относительно высоком светопропускании. 2 н. и 12 з.п. ф-лы, 11 ил., 2 табл.

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V. Также предложено фотоэлектрическое устройство, включающее подложку (102); первый солнечный элемент (108), расположенный над подложкой (102); контакт (116), расположенный над первым солнечным элементом (108); туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ); буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102). Изобретение обеспечивает улучшение качества материала туннельного перехода, что обеспечивает высокую кристаллическую чистоту солнечных элементов над туннельным переходом, которая в свою очередь обеспечивает повышение эффективности преобразования солнечного излучения. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается. Снижение остаточного напряжения в солнечной батарее, а также повышение коэффициента ее полезного действия является техническим результатом изобретения. 14 з.п. ф-лы, 7 ил.
Наверх