Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода



Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода
A01N1/02 - Консервирование тел людей или животных, или растений или их частей; биоциды, например дезинфектанты, пестициды, гербициды (препараты для медицинских,стоматологических или гигиенических целей A61K; способы или устройства для дезинфекции или стерилизации вообще, или для дезодорации воздуха A61L); репелленты или аттрактанты (приманки A01M 31/06; лекарственные препараты A61K); регуляторы роста растений (соединения вообще C01,C07,C08; удобрения C05; вещества, улучшающие или стабилизирующие состояние почвы C09K 17/00)

Владельцы патента RU 2317109:

Федеральное государственное учреждение "Российский научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена Федерального агентства по здравоохранению и социальному развитию" ФГУ "РНИИТО им. Р.Р. Вредена Росздрава") (RU)

Изобретение относится к медицине, а именно к трансплантологии. Низкотемпературнаю плазму пероксида водорода используют в качестве стерилизующего средства при заготовке биологических трансплантатов при условии их обязательного предварительного дегидратирования. Для этого предварительно трансплантаты обрабатывают в составе, содержащем сульфосалициловую кислоту 1,0 г, пропандиасахароль - 10,0 г, спирт этиловый абсолютный - 90,0 г. Обработанные данным способом имплантаты не вызывают в окружающих тканях морфологических изменений, которые могли бы служить противопоказанием для их клинического использования. Способ позволяет стерилизовать биологические трансплантаты, не нарушая их биопластических свойств. 4 табл., 12 ил.

 

Избретение относится к медицине, а именно к трансплантологии, и может быть использовано при заготовке биологических тканей с высокими трансплантационными качествами.

Известен способ успешной стерилизации не биологических объектов низкотемпературной плазмой пероксида водорода при их микробной и вирусной контаминации [2, 3].

Известно также, что в низкотемпературном плазменном стерилизаторе СТЕРРАД 100 S можно стерилизовать все изделия медицинского назначения, за исключением целлюлозы и каучука [4], что является, на наш взгляд, недостатком способа.

Известен способ плазменной стерилизации мелких фрагментов лиофилизированной губчатой кости [5]. Авторы способа не обнаружили никакой разницы в эволюции трансплантатов, стерилизованных плазмой и газообразной окисью этилена, взятой в качестве контроля. В клинических условиях с использованием таких трансплантатов было пролечено 52 пациента с малыми и средними костными дефектами. Результаты лечения оказались успешными, каких-либо осложнений не наблюдалось. К сожалению авторы не представили гистологической эволюции таких трансплантатов и сведений об их остеоиндуктивной активности. Кроме того, известно, что лиофилизированная кость по своей биологической ценности значительно уступает костной ткани, консервированной замораживанием [1].

Известен способ (прототип), в котором приведены экспериментальные данные, характеризующие остеоиндуктивные свойства деминерализованных костных трансплантатов, стерилизованных низкотемпературной плазмой пероксида водорода [6].

Результаты проведенных на крысах опытов по эктопической пересадке таких трансплантатов не выявили феномена индукции, тогда как в контрольной группе, где применялась заготовленная в стерильных условиях костная ткань, она была. Следовательно, низкотемпературная плазма в данном случае лишила деминерализованные трансплантаты их полезных остеоиндуктивных свойств.

Технический результат изобретения состоит в сохранении полезных качеств биологических трансплантатов, что приводит к морфологической и биопластической сохранности стерилизуемых объектов. Так как применение низкотемпературной плазмы пероксида водорода для стерилизации деминерализованных костных трансплантатов, подвергнутых дегидратации, не нарушает их остеоиндуктивных свойств. Кроме этого, как показал эксперимент, стерилизованные низкотемпературной плазмой пероксида водорода сухожильные имплантаты не вызывают в окружающих тканях морфологических изменений, которые могли бы служить противопоказанием для их клинического использования. Эволюция таких трансплантатов закономерна: они подвергаются либо рассасыванию-замещению новыми органотипическими структурами, либо инкапсуляции.

Результат изобретения достигается за счет того, что непосредственно перед стерилизацией трансплантаты обрабатывают в течение 2-3 часов при комнатной температуре в растворе, состоящем, г: сульфосалициловая кислота (1,0), пропандиасахароль (10,0), спирт этиловый абсолютный (90,0), после чего высушивают в термостате при 37°С.

На иллюстрациях изображены:

Фиг.1

Замещение сухожильного трансплантата новообразованной соединительной фиброзной тканью через 3 месяца после имплантации.

Окраска гематоксилин-эозин Х 105.

Фиг.2

Формирование соединительно-тканной капсулы вокруг сухожильного трансплантата через 3 месяца после операции. Окраска гематоксилин-эозин Х 105.

Фиг.3

Через 7 суток после эктопической имплантации деминерализованного костного трансплантата. Трансплантат не выявляется.

Фиг.4

Через 3 месяца после эктопической имплантации деминерализованного костного трансплантата. На рентгенограммах видно замещение трансплантата новообразованной костной тканью.

Фиг.5

Новообразованная костная ткань на месте имплантации деминерализованного костного трансплантата через 3 месяца после операции. Окраска гематоксилин-эозин Х 105.

Фиг.6

Больная П. (13 лет) рентгенограмма правой плечевой кости до операции.

Фиг.7

Больная П. (13 лет) рентгенограмма правой плечевой кости сразу после операции.

Фиг.8

Больная П. (13 лет) рентгенограмма правой плечевой кости через 3,5 месяца после операции.

Фиг.9

Больная С. (51 год), рентгенограмма правого коленного сустава в прямой проекции через 8 месяцев после аллотендопластики крестообразных связок.

Фиг.10

Больная С. (51 год), рентгенограмма правого коленного сустава в боковой проекции через 8 месяцев после аллотендопластики крестообразных связок.

Фиг.11

Схема операции

Таблицы показывают:

Таблица 1 - Результаты стерилизации биотканей по технологии СТЕРАД 100 S при экспозиции 45 минут.

Таблица 2 - Результаты стерилизации биотканей по технологии СТЕРАД 100 S при экспозиции 90 минут. Примечание: 1 - общее число тест-объектов; 2 - рост микрофлоры.

Таблица 3 - Фазы работы стерилизатора СТЕРРАД 100 S

*В реальных условиях диффузия протекает при атмосферном давлении, но на индикаторе показана максимальная величина давления, равная 15 Торр.

*В спецификации фирмы производителя указаны короткий цикл продолжительностью 37 мин, и длинный - продолжительностью 72 мин, в нашем случае, режимы были установлены специалистом фирмы поставщика (45 мин - короткий и 90 мин - длинный циклы стерилизации).

Таблица 4 - Типичная кривая цикла обработки в стерилизаторе СТЕРРАД 100 S (см. фиг.12).

Предлагаемый комплекс химических средств действует, во-первых, как сложный консервант, обеспечивающий морфологическую и биопластическую сохранность стерилизуемых объектов (защищает их). Во-вторых, он способствует их быстрому (в отличие от лиофилизации) обезвоживанию, что является, на наш взгляд, необходимым условием для успешной стерилизации таких объектов, к которым относятся биологические трансплантаты. В качестве доказательства правоты данных аргументов приводим собственные экспериментальные исследования, выполненные на биологических тканях, полученных посмертно у животных и человека. Объектом для микробиологических опытов служили фрагменты из крысиных хвостов (материал наиболее инфицированный) и сухожилий, а также фрагменты из сухожильной ткани трупов-доноров и костная стружка. Было установлено, что до стерилизации этот материал был контаминирован смешанной микрофлорой, состоящей из стафилококков, стрептококков, представителей кишечной группы бактерий, энтерококков, споровых аэробов и плесеней. В зависимости от времени стерилизации и состояния стерилизуемых объектов (нативные или дегидратированные) выполнены две группы опытов (табл.1 и 2).

Как видно из таблиц, в обеих группах нативный материал независимо от вида и времени стерилизации оказался не стерильным практически в 100% случаев при 45-минутной экспозиции и в 50% при стерилизации 90 минут.

Надежный стерилизующий эффект для всех испытуемых тканей был достигнут лишь в том случае, если они были дегидратированы и время их стерилизации было не менее 90 минут. Эксперимент, таким образом, доказал существенную роль дегидратации при заготовке биологических трансплантатов с помощью низкотемпературной плазмы пероксида водорода.

Гистологическое исследование препаратов кожи, сухожилий, кости до и после стерилизации рассматриваемым способом не обнаружило в них морфологических изменений, что свидетельствует об отсутствии какого-либо токсического влияния на структуру этих тканей как самого электромагнитного излучения, так и образующихся под его воздействием из пероксида водорода свободных радикалов (ОН-, ООН-) и ультрафиолетового света.

Биопластические (трансплантационные) качества тканей, стерилизованных низкотемпературной плазмой, изучены в эксперименте на крысах с эктопическими (внутримышечными) пересадками фрагментов сухожильной ткани (40 животных) и деминерализованных костных трансплантатов (30 животных). Контролем служили аналогичные операции, выполненные с применением тех же, но не стерилизованных низкотемпературной плазмой, биологических тканей. Поскольку в процессе оценки исходов операций в контроле и опытах нам не удалось установить принципиальных различий, то даем им общее описание. Так, через месяц после имплантации стерилизованные сухожилия были представлены в виде плотной практически бесклеточной структуры, окруженной слоями пролиферирующих фибробластов, местами врастающих в ткань трансплантатов. Воспалительные изменения в зоне пересадки практически отсутствовали. Мышечные волокна вокруг имплантатов на отдельных участках выглядели набухшими и хуже воспринимали окраску. Среди них попадались следы от бывших кровоизлияний и расширенные сосуды.

Спустя два месяца после вмешательства на гистологических препаратах наблюдались процессы рассасывания и замещения трансплантатов соединительной, местами фиброзной тканью. Трансплантаты в основном имели бесклеточную структуру, располагались в мышцах голени и были окружены тонким слоем формирующейся фиброзной капсулы без морфологических признаков воспаления.

К концу третьего месяца остатки трансплантатов располагались в мышцах голени. Большая их часть замещена фиброзной тканью. Вокруг таких участков обнаружен тонкий слой такой же ткани, формирующий капсулу. Воспалительные изменения отсутствовали (Фиг.1 и 2).

В другой группе экспериментов, посвященных эктопической пересадке деминерализованных костных трансплантатов, стерилизованных низкотемпературной плазмой пероксида водорода, были установлены следующие закономерности. При рентгенологическом исследовании на 30 сутки после операции в области пересадки у отдельных животных появлялись нечеткие тени перестраивающихся трансплантатов, имеющие вид небольших островков без тенденции к слиянию. У остальных животных трансплантаты рентгенологически оставались не контрастными. На гистологических препаратах к этому сроку в толще компактного слоя трансплантатов обнаруживались различной величины зоны остеогенеза, особенно хорошо выраженные в их концевых отделах. В центре таких зон выявлялись расширенные капилляры, жировые, фиброретикулярные и лимфоцитарные клетки. Здесь же происходило рассасывание расщепленных фрагментов пересаженной кости с одновременным отложением новых костных пластин, содержащих остеоциты. В костно-мозговом канале трансплантатов обнаруживали либо детрит, состоящий из белковых масс, эритроцитов и жировых включений, либо слой рыхлой фиброретикулярной ткани.

На 60 сутки при рентгенологическом исследовании в зоне имплантации у большинства животных выявлены очаги обызвествления различного размера и плотности. К 90 суткам на рентгенограммах практически у всех животных на месте пересадки были найдены тени перестроившихся трансплантатов, которые по интенсивности несколько уступали нативной кости оперированного животного (Фиг.3 и 4).

На гистологических препаратах этих сроков у животных в компактных участках имплантатов происходило слияние очагов остеогенеза с образованием нового костного регенерата (Фиг.5), повторяющего очертания перестраивающихся трансплантатов. В центре регенерата располагался миелоидно-жировой или только жировой костный мозг. Его стенки были представлены остеоидной тканью и костными пластинами с находившимися в них плоскими остеобластами и реже встречающимися крупными округлыми клетками со светлыми ядрами. Между участками новообразованной кости попадались поля незамещенного трансплантата с явлениями резорбции и продолжающегося замещения остеоидной тканью.

На основании полученных данных можно заключить, что применение низкотемпературной плазмы пероксида водорода для стерилизации деминерализованных костных трансплантатов, подвергнутых дегидратации, не нарушает их остеоиндуктивных свойств. Это позволяет рекомендовать такие трансплантаты для клинической апробации.

Следовательно, принципиальным отличием предлагаемого способа от прототипа является обязательная быстрая и притом щадящая (в отличие от лиофилизации) дегидратация биологических объектов, не нарушающая их необходимых трансплантационных качеств. Кроме того, регидратация таких трансплантатов перед использованием также происходит в ускоренные сроки, что значительно сокращает время их предоперационной подготовки. Наконец, спирт и сульфосалициловая кислота, обладая антисептическими свойствами, в свою очередь способствует повышению биоцидных свойств предлагаемого способа.

Способ стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода осуществляют следующим образом. Биологические ткани преимущественно опорного назначения, служащие для изготовления костных, сухожильных и других трансплантатов, получают от доноров по существующим правилам через 4-6 часов после их смерти. После соответствующий механической обработки ткани помещают при комнатной температуре в стеклянную или пластмассовую тару и заливают раствором, в состав которого входят сульфосалициловая кислота, пропандиасахароль и спирт этиловый абсолютный в количестве, г: сульфосалициловая кислота - 1,0; пропандиасахароль - 10,0; спирт этиловый абсолютный - 90,0. Через 2-3 часа ткани извлекают из раствора, раскладывают на фильтровальную бумагу и переносят в термостат (37°С) на просушку. Дегидратированные таким образом трансплантаты раскладывают в полипропиленовых пакетах в стерилизационной камере СТЕРРАД 100 S так, чтобы обеспечить их контакт с пероксидом водорода и плазмой со всех сторон. Вносят в камеру также тест-набор СТЕРРАД В 1 и биологический индикатор СТЕРРАД II, служащие для проверки качества стерилизации. Включают нагрев (46±4°С) и вакуумный насос до появления разрежения в камере порядка 0,7 Торр. При этом возникает воздушная плазма и удаляется остаточная влага. Затем в камеру впрыскивают пероксид водорода (номинальная концентрация составляет 59%). Через 6 минут после этого камеру продувают фильтрованным воздухом до достижения атмосферного давления и выдерживают в течение 2 минут. Далее давление вновь снижают и подводят радиочастотную энергию, равную 13,576 МГц, что приводит к образованию газовой плазмы пероксида водорода. Длится этот процесс около 4 минут. Последующая (вторая) фаза обработки является повторением предыдущей фазы за исключением снижения давления в конце стадии плазменной обработки. По окончании стерилизации при открывании вентиляционного клапана воздух, профильтрованный через систему НЕРА, входит в камеру, повышая в ней давление до атмосферного уровня. Камеру открывают, трансплантаты извлекают и подвергают консервации. Основные фазы работы стерилизатора СТЕРРАД 100 S представлены в таблицах 3 и 4.

Приводим клинические примеры:

Больная С. (51 год), и/б №4032/2005. Повреждение связок в результате дорожно-транспортного происшествия. Непосредственно после травмы лечилась консервативно. В дальнейшем сохранилась переднезадняя нестабильность в правом коленном суставе. Диагноз: Застарелое повреждение обеих крестообразных связок правого коленного сустава. Через 4,5 месяца после травмы выполнено оперативное вмешательство: Аллотендопластика обеих крестообразных связок правого коленного сустава. Послеоперационный период гладкий. Раны зажили первичным натяжением. Восемь месяцев после пластики обеих крестообразных связок правого коленного сустава двумя аллосухожилиями длинных малоберцовых мышц с костными фрагментами (Фиг.9; Фиг.10; Фиг.11).

Больная П. (13 лет), и/б №830211. Заболевание было выявлено после патологического перелома правой плечевой кости. Диагноз: Солитарная костная киста правой плечевой кости. Выполнено оперативное вмешательство: внутренняя резекция, комбинированная аллопластика деминерализованными и замороженными костными трансплантатами. На операции отмечено: полость кисты 11 на 3 см. Внутри ее находились единичные гребневидные выступы высотой 2-3 мм и протяженностью до 1/2 диаметра кости. После обработки внутренних стенок полость заполнена трансплантатами (деминерализованные + замороженные) длиной 3-4 см и сечением 0,2-0,3 см в соотношении 1:1 (Фиг.6; Фиг.7; Фиг.8).

Список литературы.

1. Ткаченко С.С. Костная гомопластика в травматологии и ортопедии. - Л.: Медицина, 1966. - с.130-133.

2. Roberts С., Antonoplos P. Inactivation of human immunodeficiency virus type 1, hepatitis A virus, respiratory syncytial virus, vaccinia virus, herpes simplex virus type 1, and poliovirus type 2 by hydrogen peroxide gas plasma sterilization. // Am. J. Infect. Control. - 1998. - Vol.26, N2. - P.94-101.

3. Vickery K., Deva A.K., Zou J. et al. Inactivation of duck hepatitis В virus by a hydrogen peroxide gas plasma sterilization system: laboratory and 'in use' testing. // J. Hosp. Infect - 1999. - Vol.41, N4. - P.317-322.

4. Stoffels E., Kieft I.E., Sladek R.E. et al. Gas plasma treatment: a new approach to surgery? // Crit. Rev. Biomed. Eng. - 2004. - Vol.32, N5-6. - P.427-460.

5. Shimizu K., Yano H., Nakamura E., Kaku N. Lipid extracted freeze-dried bank bone sterilized with low temperature plasma. // Ann. Transplant. - 2001. - Vol.6, N1. - P.26-31.

6. Ferreira S.D., Dernell W.S., Powers B.E. et al. Effect of gas-plasma stereilization on the osteoinductive capacity of demineralized bone matrix. // Clin. Orthop. - 2001. - N388. - P.233-239.

Таблица 1

Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода.
Виды биопрепаратов
НативныеДегидратированные
Серии опытовХвосты крысСухожилия крысСухожилия человекаСухожилия человекаКостная стружка
1272727272
1 серия15151581515157158
2 серия151515151515156155
3 серия15151591515158157
4 серия1515151515151510159
5 серия151515151515159156
6 серия1515151515151510157

Таблица 2
Виды биопрепаратов
НативныеДегидратированные
Серии опытовХвосты крысСухожилия человекаСухожилия крысСухожилия человекаКостная стружка
1212121212
1 серия1515153150150150
2 серия1515155150150150
3 серия1515156150150150
4 серия1515154150150150
5 серия1515155150150150
6 серия1515157150150150

Таблица 3

Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода.
ФазаПорядковый номерСтадииДавлениеПримерная продолжительность
Воздействие плазмы до основной обработки1Вакуумная стадия0,7 Торр20 мин
Стадия образования плазмы до обработки0,5 Торр
Первая фаза основной обработки2Стадия впрыскивания6-14 Торр17 мин
Стадия диффузииМаксимально 15 Торр*
Стадия воздействия плазмы0,45-0,8 Торр
Вторая фаза основной обработки3Стадия впрыскивания6-14 Торр17 мин
Стадия диффузииМаксимально 15 Торр*
Стадия воздействия плазмы0,45-0,8 Торр
Продувка4Стадия продувки760 Торр1 мин

Способ камерной стерилизации биологических трансплантатов низкотемпературной плазмой пероксида водорода, заключающийся в воздействии на пероксид водорода магнитным излучением частотой 13,576 Мгц при температуре 46±4°С, отличающийся тем, что непосредственно перед стерилизацией трансплантаты обрабатывают в течение 2-3 ч при комнатной температуре в растворе, состоящем, г: сульфосалициловая кислота (1,0), пропандиасахароль (10,0), спирт этиловый абсолютный (90,0), после чего высушивают в термостате при 37°С.



 

Похожие патенты:
Изобретение относится к области медицины, в частности к области санитарии и гигиены. .

Изобретение относится к медицине. .

Изобретение относится к области полимерной органической химии, в частности к синтезу органорастворимых биоцидных полимеров. .
Изобретение относится к средствам для дезинфекции. .

Изобретение относится к области медицинской техники и может быть применено при подготовке использованных одноразовых шприцев к утилизации. .
Изобретение относится к области биотехнологии, а именно к получению средства для удаления клещей домашней пыли и клещевых аллергенов при стирке тканевых изделий. .
Изобретение относится к области биотехнологии, а именно к получению средства для удаления клещевых аллергенов и клещей домашней пыли. .
Изобретение относится к средствам и способам комплексной дегазации, дезинфекции, дезинсекции, дезактивации и экранирования участков и зон, где выявлено или предполагается наличие сильнодействующих ядовитых веществ, отравляющих веществ, химического оружия, патогенных микроорганизмов, токсичных продуктов их жизнедеятельности, насекомых, включая переносчиков возбудителей заболеваний человека и животных, радиоактивных веществ, а также для тушения возгорания огнеопасных жидкостей или предотвращения возгорания разливов легковоспламеняющихся жидкостей.

Изобретение относится к плазмокатилитической очистке и стерилизации воздуха в бытовых, общественных и производственных помещениях от вирусов, бактерий, паров и аэрозолей органических соединений.

Изобретение относится к области приборостроения и может быть использовано для плазменной обработки поверхности объекта или частиц, подлежащих обработке. .

Изобретение относится к области медицинской техники и может быть использовано при изготовлении корпусов для искусственных клапанов сердца, зубных имплантатов, катетеров, отдельных деталей для протезов суставов и т.д.

Изобретение относится к области медицины. .

Изобретение относится к области стерилизации одежды и может найти применение в медицине и пищевой промышленности. .

Изобретение относится к медицинской технике, в частности к средствам стерилизации путем вакуумно-плазменной обработки слоев и пленок материалов медицинских инструментов потоками ионов, атомов, молекул и радикалов в плазме инертных или химически активных газов.

Изобретение относится к антимикробной обработке жидкости и находящихся в ней объектов. .

Изобретение относится к аппарату и способу стерилизации паром перекиси водорода медицинских инструментов и подобных устройств. .

Изобретение относится к стерилизации изделия с использованием газопроницаемого, водоотталкивающего материала. .
Наверх