Пирометрический датчик координат очага возгорания

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации, и предназначено для обнаружения очага возгорания в газодисперсных средах. Техническим результатом изобретения является возможность определения двумерных координат очага возгорания при высоких быстродействии и помехозащищенности, что позволяет повысить эффективность системы пожаротушения или взрывоподавления. Эти результаты достигаются благодаря использованию пирометрического датчика, состоящего из оптической системы, разделителя светового потока, светофильтров с разными спектрами пропускания и однокоординатных приемников излучения, выходы которых соединены со входом исполнительной схемы. 1 ил.

 

Изобретение предназначено для обнаружения очага возгорания в газодисперсных средах и определения его двумерных координат по тепловому излучению.

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации и взрывоподавления, и предназначено для обнаружения очага возгорания по излучению источника повышенной температуры. Изобретение может быть использовано в автоматических системах пожарной сигнализации для обеспечения взрывобезопасности газодисперсных систем (сплошная фаза - газ) в производственных условиях и на угольных шахтах.

Известны пожарные извещатели фотоэлектрического типа, реагирующие на излучение в инфракрасной, видимой или ультрафиолетовой областях спектра и срабатывающие при превышении мощностью излучения определенного предела [1], [2], [3]. Недостатком таких пожарных извещателей является то, что они срабатывают после появления открытого пламени и не могут быть использованы для предотвращения его возникновения. На правильность принятия решения о возгорании для таких датчиков оказывают большое влияние оптические характеристики среды и излучательная способность источника излучения.

Известны фотоэлектронные сканирующие системы, осуществляющие сканирование изображений в пространстве. Объектив приемной оптической системы строит изображение всего поля обзора в плоскости чувствительного слоя приемника излучения фотоэлектронной сканирующей системы [4].

Недостатками таких сканирующих систем являются невысокое быстродействие, связанное с продолжительным временем считывания электрического сигнала с координатного фотоэлектрического приемника излучения, а также влияние оптических характеристик среды на правильность определения яркости (температуры) объекта. Это делает невозможным использование подобных датчиков в системах взрывоподавления в газодисперсных средах.

Известен пирометрический датчик пожарной сигнализации [5, прототип], содержащий объектив, диафрагму, линзу, разделитель светового потока, светофильтры, инфракрасные фотодетекторы, усилители, блок термостабилизации темновых токов фотодетекторов, блок вычисления отношения двух значений напряжения, блок усреднения, пороговый детектор, блок питания.

К существенному недостатку данного датчика относится отсутствие возможности определения координат очага возгорания, что приводит к нерациональному использованию взрывоподавляющих устройств (ВПУ) при срабатывании системы взрывоподавления и, как следствие, к снижению вероятности подавления очага возгорания на ранней стадии.

Предлагаемое техническое решение, как и прототип, использует метод спектральной пирометрии, что позволяет отслеживать изменение температуры охраняемой области в газодисперсной среде и исключать влияние оптических свойств промежуточной среды на достоверность принимаемого решения о начале возгорания и при этом дополнительно дает возможность определения координат очага возгорания без потери быстродействия, что позволяет повысить эффективность системы пожаротушения или взрывоподавления.

Сущность технического решения заключается в регистрации распределения мощности светового потока по вертикальной и горизонтальной осям с помощью приемников излучения, в качестве которых используются однокоординатные приемники излучения (ОПИ), например ПЗС-линейки, расположенные перпендикулярно друг другу и оптической оси датчика. Причем каждый ОПИ регистрирует излучение в своем выделенном участке спектра. Использование двух ОПИ дает существенное повышение быстродействия пирометрического датчика по сравнению со сканирующей системой на двухкоординатном (матричном) приемнике излучения в связи с меньшим временем опроса ОПИ при прочих равных условиях.

Принцип работы предлагаемого изобретения поясняется с помощью чертежа. Устройство содержит оптическую систему 1, разделитель светового потока 2, светофильтры 3 и 4, однокоординатные приемники излучения 5, блок микроконтроллера 6, блок питания 7.

Пирометрический датчик пожарной сигнализации координат очага возгорания работает следующим образом. Излучение контролируемой области фокусируется при помощи оптической системы 1 на ОПИ и разделяется светоделительной пластиной 2 на два потока. Каждый из этих потоков через светофильтры 3 и 4 с разными спектрами пропускания попадает на свой однокоординатный приемник излучения 5. Сигналы с ОПИ подаются в исполнительную схему, которая состоит из блока микроконтроллера 6 и блока питания 7. Блок микроконтроллера преобразует в цифровые значения распределения величин электрических сигналов по длине горизонтального и вертикального ОПИ, выполняет программную фильтрацию помех, определяет область чувствительного слоя с максимальной освещенностью по экстремуму электрического сигнала для каждого ОПИ и на основании этого вычисляет двумерные координаты очага возгорания, вычисляет отношение экстремумов электрических сигналов и сравнивает полученное отношение с заранее заданным значением для принятия решения о возникновении (или отсутствии) возгорания. В случае возникновения возгорания микроконтроллер формирует управляющий сигнал на соответствующее ВПУ.

Блок питания 7 служит для формирования и стабилизации напряжений, необходимых для работы электрической схемы.

В настоящее время пирометрический датчик прошел лабораторные испытания, которые показали соответствие изготовленного образца вышезаявленным свойствам.

Источники информации

1. Авторское свидетельство 637839, 1978 г.

2. Авторское свидетельство 667984, 1979 г.

3. Авторское свидетельство 1168992, 1985 г.

4. Якушенков Ю.Г. Теория и расчет оптико-электронных приборов: Учебник для студентов приборостроительных специальностей вузов. - 3-е изд., перераб. и доп. - М.: Машиностроение, 1989. - 360 с.: ил, с.186-188.

5. Патент 2109345, 1998 г, прототип.

Пирометрический датчик координат очага возгорания, содержащий последовательно установленные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания, приемники излучения, выходы которых соединены со входом исполнительной схемы, отличающийся тем, что в качестве приемников излучения использованы однокоординатные приемники излучения, расположенные перпендикулярно друг другу и оптической оси датчика.



 

Похожие патенты:

Изобретение относится к горнодобывающей промышленности, в частности к угольной, и может быть использовано на угольных шахтах с применением комбинированного способа проветривания очистных забоев при эксплуатации газоотсасывающих установок.

Изобретение относится к области пожарной сигнализации и может быть использовано в системах пожарной сигнализации для выявления увеличения оптической плотности воздуха по интенсивности рассеивания инфракрасного излучения.

Изобретение относится к средствам пожарной техники. .

Изобретение относится к оптическим детекторам пожара и взрыва, преобразующим инфракрасное излучение от очагов пожара, открытого пламени или взрыва в электрический сигнал.

Изобретение относится к устройствам пожарной сигнализации и предназначено для обнаружения очага возгорания по инфракрасному излучению источника повышенной температуры; может быть использовано для обеспечения взрывобезопасности и пожаробезопасности в производственных помещениях и на промышленных площадках.

Изобретение относится к устройствам пожарной сигнализации. .

Изобретение относится к области охраны окружающей среды, а именно к устройствам для обнаружения лесных пожаров на ранней стадии и мониторинга развития пожаров. .

Изобретение относится к автоматической сигнализации, способам обнаружения наличия взвешенных частиц дыма в окружающей среде. .

Изобретение относится к устройствам пожарной сигнализации и может быть использовано в автоматических системах контроля и управления в шахтах, опасных по взрывам газа и пыли.

Изобретение относится к области пожарной сигнализации для выявления увеличения оптической плотности воздуха по интенсивности рассеяния светового инфракрасного излучения.

Изобретение относится к противопожарной технике и может быть использовано для обнаружения горения

Изобретение относится к средствам обеспечения подсчета количества пассажиров в автотранспортных средствах и может быть использовано в составе различных систем, имеющих интерфейс RS-485

Изобретение относится к средствам охранной сигнализации и автоматизации контрольно-пропускных пунктов

Изобретение относится к устройствам пожарной сигнализации

Изобретение относится к области радиационной техники, а именно к средствам охранной сигнализации и автоматизации контрольно-пропускных пунктов (КПП), и предназначено для использования на контрольно-пропускных пунктах, например, режимных объектов, пограничной и таможенной служб и т.п

Изобретение относится к области электрорадиотехники и может быть использовано для обнаружения в закрытых отсеках кораблей очагов загораний, которые сопровождаются появлением пламени, излучающего в ультрафиолетовом диапазоне частот (УФ) с длинами волн от 200 до 300 им

Изобретение относится к автоматизированному распознаванию пожаров на поверхности Земли посредством спутниковой системы

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации, и предназначено для обнаружения очага возгорания в газодисперсных средах

Изобретение относится к противопожарной технике и может быть использовано для обнаружения горения. Технический результат заключается в увеличении чувствительности датчика и уменьшении потребляемой мощности. Модуляционный датчик горения содержит оптическую систему 1, модулятор 3 с неподвижной 4 и подвижной 5 растровыми решетками с электромеханическим осциллятором 2. Каждая из растровых решеток модулятора 3 имеет одну зону модуляции оптического сигнала. Оптическая система 1 содержит источник оптического тестового сигнала 8 и выполнена таким образом, что на ее выходе имеются два сигнала: тестовый сигнал и сигнал контролируемого пространства, которые разделены в пространстве и не смешиваются. Параметры растровых решеток 4, 5 выбираются таким образом, что за один период движения подвижной растровой решетки 5 оптический поток контролируемого пространства последовательно перекрывается и открывается для прохождения через модулятор 3. В промежутке времени, соответствующем перекрытию оптического потока контролируемого пространства на фотоприемник 6, осуществляется включение тестового источника 8 на короткий промежуток времени с помощью схемы обработки сигналов 7. Оптический сигнал преобразуется фотоприемником 6 в электрический сигнал в виде двух импульсов: амплитуда первого импульса соответствует сигналу контролируемого пространства, а амплитуда второго импульса - тестовому сигналу. Таким образом, за счет конструкции растровых решеток и схемы обработки сигналов 7 на входе фотоприемника 6 может присутствовать только один оптический сигнал: либо тестовый, либо сигнал контролируемого пространства. 4 ил.
Наверх