Способ изготовления полупроводниковых приборов

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия. Изобретение обеспечивает снижение технологического брака и повышение эффективности производства приборов с заданными параметрами. Сущность изобретения: в способе изготовления приборов на основе арсенида галлия, включающем формирование контактов, фотолитографию, скрайбирование пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, после сборки в корпус проводят облучение протонами с энергией в интервале от 10 до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 Рад (GaAs) до 1·106 Рад (GaAs), а после облучения проводят токовую тренировку в непрерывном режиме питания при температуре 85±5°С в течение 10-24 часов. 2 ил.

 

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия

Известен способ изготовления полупроводниковых приборов [Патент РФ №1424634, МПК Н01L 21/363. Способ радиационной обработки транзисторов. / Белецкий П.Н., Вайсбурд Д.И., Орлов В.М., Чмух В.Н, Шемендюк А.Л. - Заявл. 12.01.1987, Опубл. БИПМ №11, 20.04.2000 г.], суть которого заключается в облучении полупроводниковых пластин с транзисторными приборными структурами на основе кремния флюенсами протонов от 7·1013 см-2 до 25·1013 см-2, при этом пробег протонов должен быть не менее толщины пластины, и в проведении последующей термообработки при 400-450°C в течение 20-30 мин.

Данный способ невозможно использовать при изготовлении приборов на основе арсенида галлия.

Известен способ изготовления полупроводниковых приборов [Гусятинер М.С., Горбачев А.И. Полупроводниковые сверхвысокочастотные диоды. - М., Радио и связь, 1983. - 224 с. (прототип)], включающий операции формирования контактов, фотолитографии, скрайбирования полупроводниковых пластин на отдельные кристаллы и термокомпрессионной сборки в корпус.

Недостатком данного способа изготовления приборов на основе арсенида галлия является то, что даже незначительные отклонения от оптимальных режимов используемых технологических операций (особенно, таких как скрайбирование и термокомпрессионная сборка приборов) приводят к введению дефектов в активные слои исходного арсенида галлия и, следовательно, к деградации параметров приборов и появлению технологического брака, который выявляется путем проведения различных технологических испытаний.

Следствием указанных выше процессов является снижение общего процента выхода годных изделий и, следовательно, снижение общей эффективности производства приборов.

Задачей, на решение которой направлено заявляемое изобретение, является снижение технологического брака и повышение эффективности производства приборов с заданными параметрами.

Поставленная задача решается тем, что в известном способе изготовления приборов на основе арсенида галлия, включающем формирование контактов, фотолитографию, скрайбирование пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, после сборки в корпус проводят облучение протонами с энергией в интервале от 10 до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 Рад (GaAs) до 1·106 Рад (GaAs), а после облучения проводят токовую тренировку в непрерывном режиме питания при температуре 85±5°C в течение 10-24 часов.

Изложенное выше изобретение обеспечивает следующий положительный эффект. При такой радиационной обработке восстанавливаются полностью или частично электрофизические характеристики исходного арсенида галлия, которые деградировали в результате действия технологических факторов, что позволяет полностью или частично исключить деградацию соответствующих параметров приборов. Существенное снижение или полное отсутствие деградации параметров приборов в результате действия технологических факторов позволяет существенно снизить процент брака, выявляемого при технологических испытаниях, и за счет этого повысить общую эффективность производства приборов на основе арсенида галлия.

При использовании энергии протонов менее 10 МэВ эффект восстановления электрофизических характеристик арсенида галлия, которые деградировали в результате действия технологических факторов в процессе изготовления приборов, полностью исчезает.

При энергии протонов более 60 МэВ наблюдается процесс насыщения степени восстановления электрофизических характеристик арсенида галлия, поэтому использование протонов с энергией выше этого предела теряет смысл.

Использование дозы облучения менее 1·105 Рад (GaAs) не позволяет существенным образом восстановить электрофизические характеристики арсенида галлия, которые деградировали в результате действия технологических факторов в процессе изготовления приборов, а применение дозы облучения более 1·106 Рад (GaAs) приводит к дополнительной деградации электрофизических характеристик арсенида галлия за счет введения заметного количества радиационных дефектов.

Использование температуры менее +80°С при последующей токовой тренировке в непрерывном режиме питания не позволяет стабилизировать параметры приборов, подвергнутых предварительному облучению протонами, в то время как использование температуры более +90°С при токовой тренировке в непрерывном режиме питания может приводить к деградации параметров приборов.

Процесс стабилизации структуры дефектов полностью завершается при токовой тренировке в непрерывном режиме питания при температуре 85±5°С в течение 10-24 часов и в дальнейшем параметры приборов остаются неизменными.

Физическая сущность предлагаемого способа заключается в следующем. В результате действия технологических факторов в процессе изготовления приборов в активные слои приборов на основе арсенида галлия вводятся различные дефекты. В частности, термокомпрессионная сборка приводит к введению дислокации, а скрайбирование пластин на отдельные кристаллы приводит к появлению микротрещин по периферии кристалла. Следствием введения дефектов является деградация электрофизических характеристик исходного арсенида галлия и соответствующих параметров приборов.

Предлагаемая радиационная обработка приводит к комплексной перестройке дефектов, вводимых в результате действия технологических факторов, и дефектов, вводимых при облучении. Следствием такой комплексной перестройки дефектов является снижение или полное исключение влияния вводимых в процессе изготовления приборов дефектов на электрофизические параметры материала и соответствующие параметры приборов.

Радиационная обработка, в частности, закрепляет дислокации, введенные в результате действия технологических факторов, что исключает их размножение и приводит к остановке деградационных процессов, которые и являются основной причиной брака, выявляемого технологическими испытаниями. Снижение влияния дефектов, вводимых вследствие действия технологических факторов, приводит к снижению деградации параметров материала, снижению вероятности дальнейшего развития деградационных процессов и, следовательно, к снижению содержания технологического брака и повышению общей эффективности производства приборов.

Проведение токовой тренировки в непрерывном режиме питания после облучения протонами позволяет стабилизировать структуру дефектов в активных слоях приборов и исключить изменение параметров приборов при эксплуатации и хранении.

На фиг.1 показаны зависимости степени восстановления рабочего тока диодов Ганна миллиметрового диапазона длин волн (рабочий ток до облучения нормирован на рабочий ток после облучения) от энергии протонов при облучении дозой 5·105 Рад (GaAs) для двух партий приборов, изготовленных при различных режимах термокомпрессионной сборки. Диоды изготовлены из одной и той же эпитаксиальной структуры арсенида галлия.

На фиг.2 показаны гистограммы распределения диодов Ганна миллиметрового диапазона длин волн, изготовленных без радиационной обработки протонами (1) и с использованием облучения протонами (2) с энергией 60 МэВ дозой 5·105 Рад (GaAs). Диоды изготовлены из одной и той же эпитаксиальной структуры арсенида галлия при использовании идентичных технологических режимов.

Рассмотрим пример реализации предлагаемого способа изготовления полупроводниковых приборов на основе арсенида галлия на примере диодов Ганна миллиметрового диапазона длин волн. По обычной технологии изготавливают контакты к активным слоям эпитаксиальной структуры арсенида галлия (полупроводниковая пластина), используя фотолитографию, формируют мезаструктуры (активные элементы диодов Ганна) на пластине и скрайбируют полупроводниковую пластину на отдельные кристаллы. Используя термокомпрессионную сборку, кристаллы монтируют в металлокерамический корпус. После сборки облучают приборы протонами дозой 5·105 Рад (GaAs). При этом используют протоны с энергией 60 МэВ. Как видно из фиг.1, при энергии протонов менее 10 МэВ эффект восстановления рабочего тока в результате облучения полностью исчезает. С другой стороны, использование энергии протонов более 60 МэВ нецелесообразно, поскольку эффект восстановления рабочего тока обнаруживает насыщение.

Изготовленные таким образом диоды Ганна имеют большее среднее значение мощности генерации и, следовательно, получаем больший процент выхода годных. Например, если необходимо изготовить диоды Ганна с мощностью генерации не менее 140 мВт, то при использовании известного способа изготовления приборов для данной эпитаксиальной структуры и данных технологических режимов получаем процент выхода годных (сумма всех диодов с мощностью более 140 мВт) - 40%, а при использовании предлагаемого способа изготовления приборов получаем 100% выход годных приборов по данному параметру.

Проведение токовой тренировки в непрерывном режиме питания после облучения протонами позволяет стабилизировать во времени параметры приборов, изготовленных по предлагаемому способу.

Таким образом, предлагаемый способ позволяет существенно повысить выход годных приборов на основе арсенида галлия и, следовательно, повысить эффективность их производства. Практическая реализация предлагаемого способа не вызывает затруднений.

Способ изготовления полупроводниковых приборов на основе арсенида галлия, включающий формирование контактов, фотолитографию, скрайбирование полупроводниковых пластин на отдельные кристаллы и термокомпрессионную сборку в корпус, отличающийся тем, что после сборки приборов в корпус проводят облучение протонами с энергией в интервале от 10 до 60 МэВ, при этом дозу облучения выбирают в интервале от 1·105 до 1·106 Рад (GaAs), а после облучения проводят токовую тренировку в непрерывном режиме питания при температуре 85±5°С в течение 10-24 ч.



 

Похожие патенты:

Изобретение относится к области электронной техники и может быть использовано при изготовлении полупроводниковых приборов на основе арсенида галлия. .

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в микроэлектромеханических системах в качестве датчиков, при производстве конденсаторов и индуктивностей для средств сотовой телефонной связи, а также для оптической волоконной связи на матричных полупроводниковых лазерах.

Изобретение относится к области электронного материаловедения. .

Изобретение относится к области технической физики. .
Изобретение относится к оптоэлектронике, электронике, солнечной энергетике и может быть использовано в технологии производства полупроводниковых приборов и микросхем
Изобретение относится к технологии точного приборостроения и может быть использовано для изготовления волноводных трактов постоянного и/или переменного сечения миллиметрового диапазона, применяемых в СВЧ приборах. Достигаемый технический результат - повышение качества токопроводящего покрытия внутреннего канала волновода путем повышения точности и адгезионной прочности внутреннего токопроводящего покрытия равномерно по длине волновода. Способ изготовления волноводов миллиметрового диапазона заключается в изготовлении оправки из алюминиевого сплава, наружная поверхность которой повторяет форму внутреннего канала волновода и имеет требуемые шероховатость поверхности и точность размеров, в нанесении на наружную поверхность оправки металлических слоев для формирования токопроводящего покрытия внутреннего канала и корпуса волновода и дальнейшем вытравливании оправки, а также в анодировании оправки и нанесении на ее наружную поверхность методом вакуумной металлизации слоя серебра, на который далее гальванопластическим методом осаждают слой меди до достижения заданной толщины корпуса волновода.
Наверх