Способ определения стабильности углеводородных ракетных горючих и устройство для его осуществления

Изобретение относится к измерительной технике. Способ контроля качества углеводородных ракетных горючих заключается в измерении диэлектрической проницаемости эталонного и контролируемого горючего и сравнении их фактических параметров. Измерение диэлектрической проницаемости осуществляют при частоте (300...450) кГц. Устройство для контроля качества углеводородных ракетных горючих содержит корпус, в котором размещены токоподводящие элементы, при этом корпус разделен на изолированные друг от друга камеры: эталонную и контрольную. Эталонная камера выполнена из инертного к углеводородному горючему диэлектрического материала, а в контрольной камере две взаимно противоположные стенки выполнены из пористого гидрофобного материала. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к химмотологии ракетных топлив и может быть использовано в нефтехимической, автомобильной и авиационной промышленности для определения стабильности топлив.

Известен способ определения стабильности с использованием фотоколориметрии.

Сущность способа заключается в сравнении окраски испытуемого горючего, содержащего продукты окисления с окраской горючего, предварительно очищенного от продуктов окисления или с окраской растворителя. Определения проводят на фотоколориметре ФЭК-56М.

Основными недостатками способа являются низкая производительность, точность, чувствительность и невозможность проводить определения непосредственно в средствах хранения [1].

Наиболее близким по технической сущности способом к данному изобретению является способ контроля углеводородных продуктов, заключающийся в измерении диэлектрической проницаемости углеводородных продуктов и сравнении ее с эталоном [2].

Недостатком является низкая достоверность при определении качества углеводородных продуктов в процессе хранения.

Техническим результатом изобретения является повышение достоверности определения качества в процессе хранения, который обеспечивается в способе контроля, заключающемся в измерении диэлектрической проницаемости эталонного и контролируемого горючего и сравнении их фактических параметров за счет того, что измерение диэлектрической проницаемости осуществляют при частоте от 300 до 450 кГц.

А в осуществляющем этот способ устройстве, содержащем корпус, в котором размещены токоподводящие элементы, за счет того, что корпус разделен на изолированные друг от друга камеры: эталонную и контрольную, при этом эталонная камера выполнена из инертного к углеводородному горючему диэлектрического материала, а в контрольной камере две взаимно противоположные стенки выполнены из пористого гидрофобного материала.

На фиг.1 представлен общий вид устройства, реализующего данный способ. На фиг.2 показана схема установки устройства в емкость с целью определения стабильности залитого в нее горючего.

Устройство состоит из корпуса 1, разделенного на изолированные друг от друга контрольную камеру 2 и эталонную камеру 3, внутри которых помещены секции токопроводящих элементов 4 и 5, соединенные при помощи проводников 6 и 7 с измерителем емкости, установленные при помощи шпильки 8 и стяжных гаек 9.

Рабочие диэлектрические емкости секций токопроводящих элементов 4 и 5 равны по 500 пФ каждая. Противоположные стенки контрольной камеры 2 выполнены из пористого гидрофобного материала, а стенки эталонной камеры 3 выполнены герметично из инертного к углеводородным горючим диэлектрического материала.

Стенка, разделяющая контрольную камеру 2 и эталонную камеру 3, выполнена из того же материала, что и пластины токопроводящих элементов. В стенках эталонной камеры 2 выполнены заливное отверстие 10 и сливное отверстие 11 с пробками 12 и 13.

Способ осуществляется с помощью устройства следующим образом. Перед закладкой горючего в емкость на хранение отбирают его пробу и заливают в эталонную камеру 3 устройства (фиг.1) через заливное отверстие 10, которое закрывают пробкой 12. Помещают устройство в емкость 14 (фиг.2), где через пористые стенки заполняется горючим контрольная камера 2, и затем с помощью измерителя емкости измеряют разность диэлектрической проницаемости (Δε) горючего, находящегося в замкнутом объеме эталонной камеры 3, и горючего, контролируемого с основным объектом через пористые стенки контрольной камеры 2.

При первоначальном измерении эта разность равна нулю. В процессе хранения горючее обводняется, насыщается кислородом воздуха, а также контактирует с конструкционными материалами, что способствует ускорению протекания процессов окисления и смолообразования. Скорость этих процессов характеризует стабильность горючего. В результате протекания данных процессов диэлектрическая проницаемость горючего, хранимого в емкости, будет изменяться (возрастать), а в эталонной камере 3 устройства, где процессы обводнения и насыщения кислородом воздуха, а также каталитическое воздействие конструкционных материалов исключены, диэлектрическая проницаемость горючего будет оставаться практически неизменной.

Таким образом, в процессе хранения будет расти разность диэлектрической проницаемости горючего, хранимого в емкости, а следовательно, и в контрольной камере 2 и находящегося в эталонной камере 3 устройства, по величине которой можно судить о стабильности горючего.

1. Способ контроля качества углеводородных ракетных горючих, заключающийся в измерении диэлектрической проницаемости эталонного и контролируемого горючего и сравнении их фактических параметров, отличающийся тем, что, с целью повышения достоверности определения качества в процессе хранения, измерение диэлектрической проницаемости осуществляют при частоте (300...450) кГц.

2. Устройство для контроля качества углеводородных ракетных горючих, содержащее корпус, в котором размещены токоподводящие элементы, отличающееся тем, что, с целью повышения достоверности определения качества в процессе хранения, корпус разделен на изолированные друг от друга камеры: эталонную и контрольную, при этом эталонная камера выполнена из инертного к углеводородному горючему диэлектрического материала, а в контрольной камере две взаимно противоположные стенки выполнены из пористого гидрофобного материала.



 

Похожие патенты:

Изобретение относится к анализу качества авиационных и автомобильных бензинов, а именно к способу определения давления насыщенных паров авиационных и автомобильных бензинов.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способам регулирования процессов термодеструкции нефтяных остатков в трубчатых печах.

Изобретение относится к области газового анализа и может быть использовано для решения задач обнаружения следовых количеств малолетучих (например, взрывчатых, наркотических) веществ на пальцах рук человека, подлежащего контролю, например, в составе контрольно-пропускных пунктов (КПП), порталов или турникетов.
Изобретение относится к аналитической химии и может быть использовано в качестве средства метрологического обеспечения методик выполнения измерений при определении содержания хлорорганических соединений в нефти.
Изобретение относится к аналитической химии и может быть использовано в качестве средства метрологического обеспечения методик выполнения измерений при определении содержания хлорорганических соединений в нефти.

Изобретение относится к лабораторным методам оценки эксплуатационных свойств моторных топлив, в частности к способам определения индукционного периода окисления топлив, и может быть использовано в нефтехимической, автомобильной, авиационной и других отраслях, на базах и хранилищах горюче-смазочных материалов (ГСМ) и других предприятиях, потребляющих и производящих автомобильные бензины.

Изобретение относится к способам для оценки эксплуатационных свойств топлив, в частности оценки совместимости топлив для реактивных двигателей (авиакеросинов) с резинами преимущественно на основе нитрильного каучука, применяемыми в топливных системах авиационных газотурбинных двигателей, и может быть использовано в нефтехимической, авиационной и других отраслях промышленности.

Изобретение относится к методам исследования свойств многослойных полимерных материалов, используемых для изготовления эластичных резервуаров, поддонов, рукавов, фильтроэлементов, трубопроводов, бочек, канистр, барабанов, внутренних покрытий и т.д.

Изобретение относится к области химической технологии твердого топлива и может быть использовано в коксохимической промышленности для выбора угольных шихт для коксования.
Изобретение относится к области экологии и аналитической химии

Изобретение относится к способам определения качества химической продукции путем проведения физико-химического анализа

Изобретение относится к определению химического состава дизельного топлива, например, для определения наличия депрессорных присадок (ДП) в дизельных топливах (ДТ) и может найти применение в нефтеперерабатывающей промышленности при производстве зимних видов дизельных топлив
Изобретение относится к аналитической химии, в частности к средствам анализа небиологических материалов химическими способами, преимущественно с помощью химических индикаторов, и может быть использовано для экспрессного определения ферроцена в бензине, куда его добавляют для повышения октанового числа
Изобретение относится к взрывчатым веществам

Изобретение относится к контролю качества нефтепродуктов, в частности к оценке детонационной стойкости автомобильных бензинов
Наверх