Приборный отсек космического аппарата

Изобретение относится к космической технике и может быть использовано при создании искусственных спутников и других космических аппаратов. Предлагаемый приборный отсек (ПО) имеет корпус, выполненный из сотопанелей. На корпус посредством кронштейнов установлена термостатированная плита полезной нагрузки. Аппаратура ПО устанавливается на сотопанелях и размещается преимущественно внутри приборного отсека. Сотопанели имеют вентиляционные отверстия лабиринтного типа и технологические отверстия для ввода (вывода) конструктивных элементов: штанг, межблочных трубопроводов, пучков кабелей и т.п. Зазоры между сотопанелями корпуса ПО, между ПО и термостатированной плитой полезной нагрузки, между краями технологических отверстий и указанными конструктивными элементами - экранированы оптически непрозрачным элементом. Этот элемент выполнен из материала с электропроводящим слоем, обеспечивающим электрогерметичность ПО. В экранирующем элементе также выполнены вентиляционные отверстия лабиринтного типа. Техническим результатом изобретения является повышение защищенности аппаратуры в ПО от электромагнитного излучения, паразитных токов и воздействия заряженных частиц природного и техногенного происхождения (например, магнитосферной плазмы и струй электроракетных двигателей). 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к космической технике и может быть использовано при создании приборных отсеков космических аппаратов.

Известен приборный отсек космического аппарата, содержащий корпус, включающий центральный отсек, снабженный связанными с ним внешними радиальными переборками, крышку, снабженные стыковочными фланцами приборные рамы, размещенные в центральном отсеке и между радиальными переборками (США, патент №4715566, кл. В64G 1/10, 244-159, 1987).

Недостатком такого приборного отсека является незащищенность внутренней части приборного контейнера от воздействия заряженных частиц природного и техногенного происхождения.

Известен корпус приборного контейнера космического аппарата, содержащий корпус с центральным отсеком, выполненным в виде двух коаксиальных обечаек, установленных с зазором относительно друг друга, в котором равномерно размещены продольные силовые элементы, на которых установлены элементы крепления приборных рам центрального отсека в плоскостях, перпендикулярных продольной оси приборного отсека (РФ, патент №2089466 С1, кл. 6 В64G 1/22, 1997), который выбран в качестве прототипа.

Недостатком такого технического решения является то, что конструкция приборного отсека не выполняет в полной мере функций, связанных с обеспечением защиты аппаратуры от электромагнитного излучения, паразитных токов и воздействия заряженных частиц природного и техногенного происхождения, что снижает надежность космического аппарата, вызывает необходимость введения дополнительных конструктивных элементов в состав аппаратуры, повышающих ее массу.

Целью настоящего изобретения является повышение защищенности аппаратуры от электромагнитного излучения, паразитных токов и воздействия заряженных частиц природного (электронов магнитосферной плазмы) и техногенного (ионов плазмы, генерируемой электроракетными двигателями) происхождения.

Эта цель достигается тем, что корпус приборного отсека выполнен из сотопанелей, на который посредством кронштейнов устанавливается термостатированная плита полезной нагрузки космического аппарата. Аппаратура приборного отсека устанавливается на сотопанелях и размещается преимущественно внутри приборного отсека. Сотопанели имеют вентиляционные отверстия лабиринтного типа и технологические отверстия для ввода (вывода) конструктивных элементов - штанг, межблочных трубопроводов, пучков кабелей и т.п. Причем зазоры между сотопанелями, образующими корпус приборного отсека, между приборным отсеком и термостатированной плитой полезной нагрузки, между краями технологических отверстий и конструктивными элементами, проходящими через них, экранируются оптически непрозрачным экранирующим элементом, выполненным из материала с электропроводящим слоем, обеспечивающим электрогерметичность приборного отсека. В экранирующем элементе выполнены вентиляционные отверстия лабиринтного типа.

Суть предлагаемого изобретения поясняется чертежами, где на фиг.1 изображена конструктивно-компоновочная схема корпуса приборного отсека космического аппарата; на фиг.2 - корпус приборного отсека с установленной на него полезной нагрузкой; на фиг.3 - схема экранирования зазоров; на фиг.4 - вентиляционное отверстие лабиринтного типа в сотопанели.

Приборный отсек космического аппарата содержит корпус, образованный сотопанелями 1, на который устанавливается термостатированная плита полезной нагрузки 2. Аппаратура приборного отсека установлена на внутренних поверхностях сотопанелей, имеющих технологические отверстия 3 и вентиляционные отверстия лабиринтного типа 4. Зазоры между сотопанелями 1, образующими корпус приборного отсека, между сотопанелями 1 и термостатированной плитой полезной нагрузки 2, между краями технологических отверстий 3 и конструктивными элементами 5 (штангами, межблочными трубопроводами, пучками кабелей и т.п.), проходящими через них, экранируются экранирующим элементом 6, крепящимся к элементам конструкции приборного отсека электропроводящим клеем 7.

Напротив вентиляционных отверстий в экранирующем элементе 6 устанавливаются уголки 8, которые обуславливают лабиринтный тип отверстия. Вентиляционные отверстия лабиринтного типа в сотопанелях 1 выполняются в виде полых цилиндров 9 с днищем 10 (стаканов) с окнами 11.

При функционировании космического аппарата на орбите рациональным образом обеспечивается защита аппаратуры, чувствительной к внешним воздействиям, размещенных внутри корпуса приборного отсека, от электромагнитного излучения, паразитных токов и воздействия заряженных частиц природного и техногенного происхождения.

На этапе орбитальной эксплуатации космического аппарата электромагнитное излучение, паразитные токи электростатических разрядов, а также электроны магнитосферной плазмы и ионы плазмы, генерируемой электроракетными двигателями, могут проникать в приборный отсек космического аппарата через зазоры в стыках сотопанелей, образующих корпус приборного отсека, и технологические отверстия и оказывать дестабилизирующее воздействие на функционирование аппаратуры. Экранирование зазоров элементом, выполненным из материала, предотвращающего проникновение электромагнитного излучения, обеспечивает защиту аппаратуры, размещенной внутри корпуса приборного отсека, от дестабилизирующего воздействия электромагнитного излучения, а также паразитных электромагнитных полей и токов. Оптическая непрозрачность и толщина материала предотвращает проникновение в приборный отсек заряженных частиц.

Обеспечение защиты аппаратуры, размещенной внутри корпуса приборного отсека, от дестабилизирующего воздействия электромагнитного излучения, паразитных токов и заряженных частиц на уровне приборного отсека позволяет снизить предъявляемые к ней требования, что в конечном итоге значительно упрощает и удешевляет разработку и наземную экспериментальную отработку аппаратуры и космического аппарата в целом.

Для отвода продуктов газовыделения неметаллических конструкционных материалов, расположенных внутри приборного отсека, предусмотрены вентиляционные отверстия лабиринтного типа. Максимально допускаемый размер вентиляционного отверстия определяется из условия предотвращения проникновения в приборный отсек электромагнитного излучения, количество отверстий определяется из условия минимизации механических нагрузок на конструкцию приборного отсека при спаде давления на участке выведения.

Суммарная площадь вентиляционных отверстий, обеспечивающих достигаемый эффект, зависит от конструкционных и заранее отработанных эксплуатационных характеристик, и определяется по формуле:

где Q - расход газа, вытекающего из под головного обтекателя ракеты-носителя;

V1 - внутренний объем приборного отсека, не занятый аппаратурой;

V2 - внутренний объем головного обтекателя ракеты-носителя;

μ - коэффициент расхода;

φ - коэффициент скорости;

ΔР - допускаемое избыточное давление в приборном отсеке;

ξ - коэффициент сопротивления вентиляционного отверстия;

ρ - плотность газа.

Отвод продуктов газовыделения неметаллических конструкционных материалов, расположенных внутри герметичного приборного отсека, через вентиляционные отверстия лабиринтного типа, размеры и количество которых задаются, позволяет контролировать процесс обезгаживания приборного отсека расчетно-аналитическим методом, что, в свою очередь, позволяет назначать режимы функционирования высоковольтной и высокочастотной аппаратуры, безопасные с точки зрения возникновения электрического пробоя.

Расположение вентиляционных отверстий на максимальном расстоянии и вне зон прямой видимости от элементов космического аппарата, критичных к загрязняющему воздействию продуктами газовыделения неметаллических конструкционных материалов позволяет минимизировать этот вид дестабилизирующего воздействия собственной атмосферы негерметичного отсека.

Экранирование зазоров корпуса приборного отсека оптически непрозрачным экранирующим элементом позволяют минимизировать проникновение в приборный отсек как ионов плазмы, генерируемой электроракетными двигателями, так и электронов магнитосферной плазмы. Минимизация проникновения в приборный отсек заряженных частиц через вентиляционные отверстия за счет их лабиринтного исполнения достигается предотвращением проникновения прямых потоков частиц, а также их рекомбинацией и нейтрализацией, обусловленных больших количеством соударений частиц с поверхностями отверстия.

На предприятии проведена экспериментальная проработка предлагаемого приборного отсека, в результате чего получены положительные результаты.

1. Приборный отсек космического аппарата, содержащий корпус, на который установлена термостатированная плита полезной нагрузки и внутри которого размещена аппаратура, чувствительная к внешним воздействиям таким, как электромагнитное излучение, паразитные токи электростатических разрядов, заряженные частицы естественного и искусственного происхождения, отличающийся тем, что стенки корпуса выполнены из сотопанелей, имеющих вентиляционные отверстия лабиринтного типа и технологические отверстия, причем зазоры между сотопанелями, между приборным отсеком и термостатированной плитой, между краями технологических отверстий и конструктивными элементами, проходящими через них, экранированы оптически непрозрачным экранирующим элементом, выполненным из материала с электропроводящим слоем, экранирующим электромагнитные излучения и обеспечивающим электрогерметичность приборного отсека.

2. Приборный отсек по п.1, отличающийся тем, что вентиляционные отверстия лабиринтного типа в сотопанелях выполнены в виде стакана с окнами, причем суммарную площадь вентиляционных отверстий определяют по формуле

где Q - расход газа, вытекающего из-под головного обтекателя ракеты-носителя;

V1 - внутренний объем приборного отсека, не занятый аппаратурой;

V2 - внутренний объем головного обтекателя ракеты-носителя;

μ - коэффициент расхода;

φ - коэффициент скорости;

ΔР - допустимое избыточное давление в приборном отсеке;

ξ - коэффициент сопротивления вентиляционного отверстия;

ρ - плотность газа.

3. Приборный отсек по п.1, отличающийся тем, что оптически непрозрачный экранирующий элемент крепится к корпусу электропроводящим клеем.



 

Похожие патенты:

Изобретение относится к противопожарной технике и может быть использовано при разработке технических решений по тушению пожаров в обитаемых гермоотсеках космических летательных аппаратов (КЛА) на всех этапах их эксплуатации.

Изобретение относится к ракетно-космической технике и может использоваться в условиях образования в полостях головного блока пожаровзрывоопасных газовых смесей, например, при утечках или дренажах компонентов топлива (жидких кислорода и водорода).

Изобретение относится к устройствам для предохранения космических аппаратов от неблагоприятных внешних воздействий и может быть использовано при их запусках боевыми ракетами морского базирования.

Изобретение относится к космической технике, а конкретнее к области проектирования и эксплуатации систем регулирования давления в герметичных камерах (отсеках), используемых для проведения научных экспериментов и осуществления технологических операций, связанных с вакуумированием, на борту космического аппарата (КА).

Изобретение относится к методам и средствам защиты космических летательных аппаратов от средств нападения, преимущественно перед входом в верхние слои атмосферы. .

Изобретение относится к методам и средствам защиты космических летательных аппаратов от систем противокосмической обороны, преимущественно оснащенных средствами самонаведения, работающими в инфракрасном диапазоне.

Изобретение относится к ракетно-космической технике и может использоваться в условиях образования в полостях головного блока пожаровзрывоопасных газовых смесей, например при утечках или дренажах компонентов топлива (жидких кислорода и водорода).

Изобретение относится к терморегулированию объектов ракетно-космической техники и может быть использовано в период предстартовой подготовки ракетного блока (РБ) в процессе проверки бортовой аппаратуры его приборного отсека.

Изобретение относится к ракетно-космической технике, а именно к устройствам сброса компонентов из ракетных разгонных блоков. .

Изобретение относится к ракетно-космической технике и предназначено для установки на наружной поверхности космического аппарата и последующего отделения ИК-мишени в виде надувных тонкопленочных оболочек с темным покрытием.

Изобретение относится к ракетно-космической технике и может быть использовано при изготовлении обтекателей ракет, разделяемых на отдельные панели. .

Изобретение относится к несущим конструкциям из слоистых полимерных композиционных материалов и может применяться в высокоточной космической и наземной технике, например, в качестве опоры оптических приборов, антенных устройств, измерительных систем.

Изобретение относится к формируемым в космосе бескаркасным центробежным конструкциям (БЦК), которые могут быть использованы для развертывания на орбите солнечных батарей, отражателей света и других, преимущественно крупногабаритных, систем.

Изобретение относится к космической энергетике и конкретно к пленочным солнечным батареям (СБ), преимущественно на основе аморфного кремния. .

Изобретение относится к специализированным космическим аппаратам, выполняющим дозаправку автономных космических аппаратов криоагентами (жидким азотом, жидким гелием) и компонентами топлива (жидким кислородом, сжиженным метаном, гидразином).

Изобретение относится к многоразовым транспортным космическим системам нового поколения (типа «КОРОНА»). .

Изобретение относится к спутникам малой массы (до 10 кг), запускаемых преимущественно попутно. .

Изобретение относится к транспортным космическим системам. .

Изобретение относится к космической технике и может быть использовано при создании спутников связи. .

Изобретение относится к космической технике и может быть использовано в крупногабаритных высокоточных трансформируемых конструкциях
Наверх