Способ поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов и устройство для его осуществления

Изобретения относятся к лазерной обработке, в частности к способу поддержания заданного расстояния между соплом и обрабатываемой поверхностью и устройству для его осуществления, и может найти применение в различных отраслях машиностроения. Измеряют давление в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла. Корректируют величину опорного давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью по изменению давления в сопле и поддерживают заданное расстояние между ними по изменению давления под соплом по сравнению с опорным с учетом его корректировки. В устройстве датчик давления радиального потока и датчик давления газа внутри сопла соединены последовательно через АЦП с фильтром, выполненным в схеме программируемой логической матрицы, которая соединена с микропроцессором с подключенным к нему контроллером. Оптический датчик установлен на валу привода узла фокусировки и соединен с микропроцессором через преобразователь импульсов в код, соединенный с контроллером. Микропроцессор соединен с компьютером, на котором установлена программа оператора для управления устройством. Достигается повышение точности установки и поддержание заданного расстояния между соплом и поверхностью детали. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области лазерной обработки материалов и может быть использовано в устройствах лазерной резки, сварки, гравировки, маркировки и т.п. в различных отраслях промышленности.

Известны способ поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов и устройство для его осуществления [1]. Указанный способ заключается в измерении давления газа в зазоре между соплом и обрабатываемой поверхностью и поддержании заданного расстояния между соплом и обрабатываемой поверхностью по изменению давления в зазоре. Устройство для осуществления способа содержит узел фокусировки, состоящий из корпуса с линзой и сопла с осевым отверстием для формирования струи технологического газа, датчик давления радиального потока газа в зазоре между соплом и обрабатываемой поверхностью, привод перемещения узла фокусировки, схему управления приводом перемещения. При изменении сигнала с датчика давления вырабатывается сигнал, управляющий приводом перемещения, в результате чего поддерживается определенное заданное расстояние между соплом и обрабатываемой поверхностью. Данные способ и устройство работоспособны только при расстояниях между соплом и поверхностью, которые больше определенного критического расстояния. Если расстояние h>hкр, то при увеличении зазора давление газа в зазоре тоже растет. Изменение сигнала с датчика ведет к выработке управляющего сигнала для привода перемещения. Привод уменьшает расстояние до заданного. При уменьшении зазора снижается давление в зазоре и привод, соответственно, увеличивает расстояние до заданного. Однако при уменьшении зазора до расстояний h≤hкр давление в зазоре вместо снижения начинает быстро расти. Оно воспринимается датчиком так же, как на расстояниях выше критического, и привод может опустить сопло до касания с поверхностью, что приводит устройство к негодности.

Известны способ поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов и устройство для его осуществления [2]. Указанный способ заключается в том, что дополнительно и одновременно с измерением давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью измеряют давление внутри сопла и поддерживают заданное расстояние между соплом и обрабатываемой поверхностью по изменению давления в зазоре под соплом при условии неизменного давления в сопле, а при одновременном увеличении давления под соплом и внутри сопла поддерживают заданное расстояние по изменению давления внутри сопла. Данный способ основан на следующем. При расстоянии между соплом и обрабатываемой поверхностью h>hкр возможные отклонения величины зазора сказываются только на величине давления в радиальной струе технологического газа под соплом. С увеличением зазора давление растет. Внутри сопла давление не изменяется. При h≤hкр давление в зазоре под соплом начинает расти при уменьшении зазора, но при этом растет и давление в сопле. Устройство для осуществления способа дополнительно снабжено датчиком давления технологического газа внутри сопла. Схема управления приводом перемещения изменена соответствующим образом. При изменяющемся давлении под соплом и неизменном давлении внутри сопла схема управления берет за основу сигнал от датчика давления под соплом и преобразовывает его в управляющий сигнал для привода узла фокусировки. При увеличении давления как под соплом, так и внутри него схема управления берет за основу сигнал от датчика давления внутри сопла и преобразовывает его в управляющий сигнал.

Недостаток данного технического решения заключается в том, что оно исходит из постоянства давления в сопле. Однако давление в сопле подвержено колебаниям, связанным с принципом работы компрессора, подающего газ, а также характером работы другого оборудования, подключенного к магистрали. Колебания давления в сопле ведут к колебаниям давления под соплом, что ведет к изменению заданного расстояния между соплом и обрабатываемой поверхностью, а следовательно, к изменению условий резки. Последнее сказывается на качестве реза.

Кроме того, на точности поддержания заданного расстояния между соплом и обрабатываемой поверхностью сказываются флуктуации давления, образующиеся при истечении потока газа из сопла, и электрические помехи в цепях датчиков до схем сравнения.

Принцип построения электрической схемы известного устройства не обеспечивает ее быстродействия, что также сказывается на точности поддержания заданного расстояния.

В устройстве известного технического решения установка каждого нового значения расстояния между соплом и обрабатываемой поверхностью осуществляется вручную, что требует определенного времени и не способствует точности установки.

Техническим результатом изобретения является повышение точности установки и поддержания заданного расстояния между соплом и обрабатываемой поверхностью и повышение оперативности установки каждого нового значения этого расстояния.

Указанный технический результат достигается тем, что в способе поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов, включающем установку заданного расстояния, измерение давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, измерение давления внутри сопла, поддержание заданного расстояния по изменению давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, установку заданного расстояния осуществляют с помощью оптического датчика перемещения, установленного на валу привода узла фокусировки, одновременно с установкой заданного расстояния измеряют опорные значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, измеряют в процессе лазерной обработки материала текущие значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, сравнивают их с опорными, по изменению давления в сопле корректируют величину опорного давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и поддерживают заданное расстояние между соплом и обрабатываемой поверхностью по изменению давления под соплом по сравнению с опорным с учетом его корректировки.

В устройстве, реализующем способ и содержащем узел фокусировки, состоящий из корпуса с линзой, сопла с осевым отверстием для формирования осевой струи технологического газа, датчик давления радиального потока газа в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, датчик давления технологического газа внутри сопла, привод перемещения узла фокусировки, каждый из датчиков соединен последовательно через АЦП с фильтром, выполненным в схеме программируемой логической матрицы, которая соединена с микропроцессором, включающим прикладное программное обеспечение для управления на основании полученной от датчиков информации подключенным к нему контроллером, причем контроллер выполнен в схеме программируемой логической матрицы и соединен с приводом узла фокусировки через драйвер, в устройство введен оптический датчик, установленный на валу привода узла фокусировки и соединенный с микропроцессором через преобразователь импульсов в код, выполненный в схеме программируемой логической матрицы и соединенный с контроллером, при этом микропроцессор соединен с компьютером, на котором установлена программа оператора для управления устройством.

Повышение точности поддержания заданного расстояния между соплом и обрабатываемой поверхностью достигается тем, что одновременно с установкой заданного расстояния измеряют опорные значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, измеряют в процессе лазерной обработки материала текущие значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, сравнивают их с опорными, по изменению давления в сопле корректируют величину опорного давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и поддерживают заданное расстояние между соплом и обрабатываемой поверхностью по изменению давления под соплом по сравнению с опорным с учетом его корректировки.

Кроме того, повышение точности достигается за счет исключения влияния на выработку управляющего сигнала флуктуаций давления на срезе сопла и электрических помех в цепях от датчиков давлений до схем сравнения. Для этого в устройстве, реализующем способ, каждый из датчиков соединен последовательно через АЦП с фильтром, выполненным в схеме программируемой логической матрицы.

Цифровая элементная база схемы устройства повышает его быстродействие. Повышение быстродействия и уменьшение помех за счет фильтрации сигналов от датчиков позволяет работать на расстояниях между соплом и обрабатываемой поверхностью, больших критического (h>hкр). Дополнительным фактором является то, что с учетом существующих скоростей реза и характеристик неровностей материала требования к вертикальной скорости перемещения узла фокусировки оказываются ниже реализуемых в данном устройстве. Таким образом, в решении по изобретению отпадает необходимость использовать датчик в сопле для получения управляющего сигнала. Он используется в данном решении для выработки сигнала корректировки опорной величины давления в случае изменения давления в сопле за счет колебания давления в магистрали. В случае резких изменений давления в сопле, что является свидетельством ухода сопла в область расстояний до обрабатываемой поверхности, меньших критического (h<hкр), в программном обеспечении (ПО) микропроцессора предусмотрена программа (расчет, сравнение, учет знака, выдача управления) для работы в этой области расстояний.

Точность первоначальной установки заданного расстояния между соплом и обрабатываемой поверхностью достигается за счет того, что она осуществляется не вручную, а с помощью оптического датчика перемещения, установленного на валу привода узла фокусировки и соединенного с микропроцессором через преобразователь импульсов в код, выполненный в схеме программируемой логической матрицы, при этом микропроцессор соединен с компьютером, на котором установлена программа оператора для управления устройством.

Устройство, реализующее способ поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов, представлено чертеже, где

1 - узел фокусировки,

2 - корпус узла фокусировки,

3 - линза,

4 - сопло,

5 - насадка,

6 - обрабатываемая поверхность,

7 - датчик давления радиального потока газа в зазоре между соплом и обрабатываемой поверхностью,

8 - датчик давления потока газа в сопле,

9, 10 - АЦП,

11, 12 - фильтры,

13 - программируемая логическая матрица (ПЛМ),

14 - микропроцессор (МП),

15 - контроллер,

16 - привод перемещения узла фокусировки,

17 - драйвер,

18 - оптический датчик,

19 - преобразователь импульсов в код (ПИК),

20 - персональный компьютер (ПК).

Устройство для реализации способа поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов (чертеж) содержит узел фокусировки 1, состоящий из корпуса 2 с линзой 3, примыкающее к нему сопло 4 с осевым отверстием и насадкой 5. Насадка 5 служит для обеспечения измерения давления радиального потока газа в зазоре между соплом и обрабатываемой поверхностью 6 с помощью датчика давления 7. Датчик давления 8 измеряет давление технологического газа внутри сопла. Каждый из датчиков 7 и 8 соединен последовательно через АЦП 9 и 10 соответственно с фильтрами 11 и 12, выполненными в схеме программируемой логической матрицы 13. Матрица соединена с микропроцессором 14, включающим прикладное программное обеспечение для управления на основании полученной от датчиков информации подключенным к нему контроллером 15, причем контроллер выполнен в схеме программируемой логической матрицы и соединен с приводом узла фокусировки 16 через драйвер 17. В устройство введен оптический датчик 18, установленный на валу привода узла фокусировки и соединенный с микропроцессором через преобразователь импульсов в код 19, выполненный в схеме программируемой логической матрицы и соединенный с контроллером. Микропроцессор соединен с компьютером 20, на котором установлена программа оператора для управления устройством.

Устройство работает следующим образом. В начале обработки осуществляют установку заданного расстояния между соплом 4 и обрабатываемой поверхностью 6 с помощью оптического датчика 18, установленного на валу привода узла фокусировки 1. Для этого устанавливают сопло непосредственно на обрабатываемую поверхность, а затем поднимают на заданное расстояние от нее. Непосредственно после установки заданного расстояния измеряют с помощью датчиков 7 и 8 соответственно значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, которые являются опорными. Измеряют в процессе лазерной обработки материала текущие значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла с помощью датчиков 7 и 8 соответственно. Изменения величины зазора приводят к изменению величины давления, измеряемого датчиком 7. На величину этого давления влияют также изменения давления в магистрали, измеряемого датчиком 8. Давление в магистрали меняется в связи с принципом работы компрессора, подающего газ в сопло, и в связи с характером работы другого оборудования, подключенного к магистрали. Сигналы с датчиков давления 7 и 8 обрабатываются одноканальными АЦП 9 и 10. Преобразованные величины в цифровом коде фильтруются методом осреднения фильтрами 11 и 12, выполненными в схеме программируемой логической матрицы 13, и преобразуются в соответствующий формат для обработки микропроцессором 14. Далее информация о давлении в цифровом виде поступает в микропроцессор 14 в качестве исходных данных для работы программы по расчету изменения величины расстояния между соплом и обрабатываемой поверхностью. Поддержание зазора неизменным осуществляется с помощью привода 16 узла фокусировки, управляющий сигнал к которому подается с контроллера 15, выполненного в схеме программируемой логической матрицы 13, через драйвер 17. Встроенное программное обеспечение (ПО) микропроцессора 14 управляет двигателем привода узла фокусировки на основании информации, полученной в процессе обработки текущих сигналов с датчиков давления 7 и 8. Программное обеспечение сравнивает эти сигналы с опорными, по изменению давления в сопле корректирует величину опорного давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и поддерживает заданное расстояние между соплом и обрабатываемой поверхностью по изменению давления под соплом по сравнению с опорным с учетом его корректировки. Программа оператора, установленная на персональном компьютере 20, позволяет управлять всеми узлами устройства, в том числе позволяет задавать режимы работы и величину расстояния между соплом и обрабатываемой поверхностью. Программа позволяет проводить диагностику работы устройства с выявлением возможного отказа узлов.

Таким образом, способ и устройство по изобретению позволяют точно и оперативно устанавливать заданное расстояние между узлом фокусировки лазерного излучения и обрабатываемой поверхностью и с высокой точностью поддерживать его в процессе работы.

Источники информации

1. Патент РФ №2139783, кл. В23К 26/14 от 30.12.1997.

2. Патент РФ №2205096, кл. В23К 26/14 от 01.10.2001 (прототип).

1. Способ поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов, включающий установку заданного расстояния, измерение давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, измерение давления внутри сопла, поддержание заданного расстояния по изменению давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, отличающийся тем, что установку заданного расстояния осуществляют с помощью оптического датчика перемещения, установленного на валу привода узла фокусировки, одновременно с установкой заданного расстояния измеряют опорные значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, измеряют в процессе лазерной обработки материала текущие значения давлений в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и внутри сопла, сравнивают их с опорными, по изменению давления в сопле корректируют величину опорного давления в зазоре между соплом узла фокусировки и обрабатываемой поверхностью и поддерживают заданное расстояние между соплом и обрабатываемой поверхностью по изменению давления под соплом по сравнению с опорным с учетом его корректировки.

2. Устройство для поддержания заданного расстояния между соплом и обрабатываемой поверхностью при лазерной обработке материалов, содержащее узел фокусировки, состоящий из корпуса с линзой, сопла с осевым отверстием для формирования осевой струи газа, датчик давления радиального потока газа в зазоре между соплом узла фокусировки и обрабатываемой поверхностью, датчик давления газа внутри сопла, привод перемещения узла фокусировки, отличающееся тем, что каждый из датчиков соединен последовательно через аналого-цифровой преобразователь (АЦП) с фильтром, выполненным в схеме программируемой логической матрицы, которая соединена с микропроцессором, включающим прикладное программное обеспечение для управления на основании полученной от датчиков информации подключенным к нему контроллером, причем контроллер выполнен в схеме программируемой логической матрицы и соединен с приводом узла фокусировки через драйвер, в устройство введен оптический датчик, установленный на валу привода узла фокусировки и соединенный с микропроцессором через преобразователь импульсов в код, выполненный в схеме программируемой логической матрицы и соединенный с контроллером, при этом микропроцессор соединен с компьютером, на котором установлена программа оператора для управления устройством.



 

Похожие патенты:

Изобретение относится к сварке плавлением, в частности к ручной питаемой порошком горелке для лазерной сварки, и может найти применение для ремонта сопел турбины. .

Изобретение относится к способу газолазерной резки титана и его сплавов и может найти применение в различных отраслях энерго- и машиностроения. .
Изобретение относится к сварочному производству и может быть использовано для наплавки деталей, работающих в условиях высоких температур и при воздействии значительных нагрузок.

Изобретение относится к оборудованию для лазерной обработки. .

Изобретение относится к технологии лазерного синтеза объемных изделий (ЛСОИ) из порошковых композиций. .

Изобретение относится к области резки, в частности к способу и устройству для резки материалов лазерным лучом с использованием вспомогательного газа, удаляющего из реза продукты разрушения, и может найти применение в различных отраслях машиностроения.

Изобретение относится к лазернообрабатывающим технологиям, конкретнее - к усовершенствованной лазернообрабатывающей головке и способу лазерной обработки, пригодным для использования при разрушении, резании или сверлении с большой производительностью таких материалов, как пластмасса и металл.

Изобретение относится к области обработки материалов, а более конкретно к области лазерной резки, и может быть использовано в лазерных станках для раскроя листовых материалов в различных отраслях машиностроения.

Изобретение относится к обработке металлов и может найти применение при гравировке и резке листовых деталей в различных отраслях машиностроения. .

Изобретение относится к лазерной технологии, в частности к установке для лазерной обработки, которая может быть использована для различной обработки деталей с поверхностями вращения.

Изобретение относится к обработке изделия для модификации или подготовки топографии поверхности изделия или исходного материала и может найти применение в различных отраслях машиностроения и металлургии.

Изобретение относится к способам резки и скрайбирования прозрачных неметаллических материалов, преимущественно особо твердых с полупроводниковым покрытием и без него, и может использоваться в электронной промышленности.

Изобретение относится к лазерной технике и может быть использовано для различной лазерной обработки крупногабаритных деталей с поверхностями вращения второго порядка, смещенных относительно оси вращения на случайную величину.

Изобретение относится к лазерной технологии, в частности к установкам для лазерной обработки листовых материалов, и может найти применение в различных отраслях машиностроения при раскрое плоских листов.

Изобретение относится к области лазерной обработки материалов, а именно к фигурному раскрою плоских листов с помощью лазерного излучения, и может быть использовано для изготовления деталей различной конфигурации широкой номенклатуры в машиностроении, электротехнике, авиа- и автомобилестроении и др.

Изобретение относится к области лазерных технологий, в частности к установке для лазерной резки листовых материалов, и может быть использовано как автономно, так и в составе гибких производственных систем в различных отраслях машиностроения.

Изобретение относится к лазерной обработке материалов, а именно к фигурному раскрою плоских листов с помощью лазерного излучения и может быть использовано для изготовления деталей различной конфигурации широкой номенклатуры, в машиностроении, электротехнике, авиа- и автомобилестроении.

Изобретение относится к области лазерных технологий и может найти применение в различных отраслях машиностроения для раскроя материала. .

Изобретение относится к сварке, резке, в частности к установкам для лазерной обработки листовых материалов, и может быть использовано в судостроении и других отраслях машиностроения.

Изобретение относится к технике лазерной термической обработки тонколистовых металлических материалов, сплавов из них, закаливающихся высокопрочных сталей, имеющих разные теплофизические свойства, и может найти применение в машиностроении, авиастроении, судостроении
Наверх