Система однотрубного теплоснабжения

Изобретение относится к теплоэнергетике, а именно к централизованному теплоснабжению на основе использования отработавшей теплоты турбин КЭС и АЭС с помощью теплонасосных установок. Технический результат: снижение затрат электроэнергии, связанных с обеспечением теплоснабжения, вплоть до нулевого значения, возможность повышения мощности электростанции за счет дополнительной выработки электроэнергии газотурбинными приводными двигателями ТНУ, улучшение экологии и экономических показателей электростанции за счет дополнительной выработки теплоты. Система однотрубного теплоснабжения включает паровые турбины электростанций (КЭС, АЭС), магистральные теплопроводы, поставляющие нагретую сетевую воду в обслуживаемый город, и внутригородские системы и устройства, использующие теплоту и химически очищенную сетевую воду для городских нужд. В качестве теплоисточника используются парокомпрессионные теплонасосные установки (ТНУ) с рабочим телом термодинамического цикла, имеющим низкие критические параметры, например диоксидом углерода, который после сжатия в компрессоре находится при сверхкритическом давлении, образующим треугольный цикл Лоренца. В качестве низкопотенциального источника теплоты используется отработавшая теплота турбин электростанций, которая передается к испарителям теплонасосных установок по замкнутому контуру циркуляционной воды, имеющему трубопроводы для поступления и сброса воды в источник технического водоснабжения электростанции. В качестве теплоносителя используется механически очищенная вода из источника технического водоснабжения, которая после предварительного подогрева в первой ступени теплообменника-нагревателя теплонасосной установки поступает на химводоочистку и затем догревается во второй ступени. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике, а именно к централизованному теплоснабжению на основе использования отработавшей теплоты турбин КЭС и АЭС с помощью теплонасосных установок.

Идея однотрубного теплоснабжения от паротурбинных ТЭЦ была предложена автором [1] с целью теплоснабжения городов, расположенных на дальних расстояниях от ТЭЦ (до 120-150 км), что позволяло значительно снизить издержки по созданию и эксплуатации магистральных тепловых сетей. Она получила дальнейшее развитие в работах авторов [2] и служит прототипом изобретения. Здесь рассматривалась передача теплоты в Москву от Конаковской ГРЭС мощностью 2400 МВт с турбинами К-300-240, находящейся на расстоянии 130 км от обслуживаемого города. Поступившая в город нагретая вода использовалась как теплоноситель и в качестве химически очищенной воды для городских нужд.

Техническое решение [2] имеет следующие недостатки.

1. Требовалась значительная и дорогостоящая реконструкция конденсационных турбин с целью их перевода в теплофикационный режим.

2. Большие отборы пара на теплофикационные нужды привели к изменению режимов работы проточной части турбины.

3. Это привело к снижению электрической мощности ГРЭС на 560-600 МВт, что радикально ухудшило ее технико-экономические показатели.

Указанные недостатки данного технического решения резко сужают области его практического использования.

Целями изобретения являются:

- полное исключение недостатков по пп.1 и 2 и недовыработки мощности турбинами;

- снижение дополнительных затрат электроэнергии (п.3), связанных с обеспечением теплоснабжения, вплоть до нулевого значения;

- возможность повышения мощности электростанции за счет дополнительной выработки электроэнергии газотурбинными приводными двигателями ТНУ;

- максимальное расширение области использования однотрубного теплоснабжения за счет его распространения на действующие электростанции, включая АЭС;

- обеспечение требования энергетической безопасности в части недопустимости использования монотоплива (газа) более половины топливного баланса городов и регионов [3];

- улучшение экологии как в обслуживаемых городах, так и в местах размещения КЭС, АЭС, где снижается тепловое загрязнение среды;

- улучшение экономических показателей электростанции за счет дополнительной выработки теплоты.

Указанные цели достигаются тем, что отработавшая теплота турбин электростанций частично или полностью используется в качестве низкопотенциального источника теплоты (НПИТ) парокомпрессионных теплонасосных установок (ТНУ), а передача теплоты к испарителям ТНУ осуществляется с помощью замкнутого контура циркуляционной воды, имеющего трубопроводы для поступления и сброса воды в источники технического водоснабжения, при этом рабочим телом термодинамического цикла ТНУ служит вещество с низкими критическими параметрами, например диоксид углерода, который после сжатия в компрессоре находится при сверхкритических параметрах, образуя так называемый треугольный цикл Лоренца, энергоэффективность которого тем выше, чем ниже температура теплоносителя (сетевой воды) на входе в теплообменник - нагреватель ТНУ и такая минимальная температура имеет место в проектном зимнем режиме работы ТНУ при заборе сетевой воды из источника технического водоснабжения электростанции, которая после механической очистки поступает в первую ступень теплообменника - нагревателя ТНУ и затем в химводоочистку, после которой возвращается для окончательного нагрева во второй ступени нагревателя и затем подается по однотрубной системе в обслуживаемый город, где используется, как в прототипе изобретения, в качестве теплоносителя для целей теплоснабжения и в качестве химически очищенной воды для городских нужд, причем для привода ТНУ может использоваться электрический, паровой и газотурбинный привод, причем мощность последнего может превышать приводную мощность ТНУ с целью выработки дополнительной электроэнергии электростанцией.

На чертеже приведена схема однотрубной системы теплоснабжения.

1 - конденсатор паровых турбин; 2 - подвод и отвод воды системы технического водоснабжения; 3 - контур циркуляционной воды конденсаторов; 4 - ТНУ электростанции; 5 - сетевая вода из источника технического водоснабжения; 6 - химводоочистка сетевой воды; 7 - магистральный теплопровод; 8 - пиковый котел; 9 - городские потребители теплоты; 10 - городские ТНУ; 11 - пиковый котел ТНУ; 12 - потребители теплоты от ТНУ; 13 - охлажденная в испарителях ТНУ вода, поступающая на нужды городского водоснабжения; 14 - сетевая вода на нужды бытового и технологического горячего водоснабжения.

Она работает следующим образом. Охлаждающая вода, нагретая в конденсаторах турбин 1, с помощью контура 3 (связанного с системой технического водоснабжения трубопроводами 2) поступает в качестве НПИТ в ТНУ 4, где происходит нагрев механически очищенной сетевой воды 5, поступающей из источника технического водоснабжения, до необходимой температуры для химводоочистки 6. После ХВО сетевая вода поступает во вторую ступень нагрева и направляется по магистральному теплопроводу 7 в обслуживаемый город. Далее вода делится на два потока: предназначенного для отопления потребителей 9 (с использованием пикового котла 8) и для обеспечения нагрузок бытового и технологического горячего водоснабжения 14. Поскольку температура воды после отопительных приборов составляет 40-50°C, то этот температурный потенциал используется с помощью городских ТНУ 10, имеющих свой контур теплоснабжения потребителей 12, также включающий пиковые котлы 11. Охлажденная в испарителях ТНУ сетевая вода затем направляется в систему городского водоснабжения 13.

Источники информации

1. В.Б.Пакшвер. Системы теплоснабжения городов от мощных электростанций по однотрубной схеме. Доклад на соискание ученой степени доктора технических наук. М., 1963.

2. Б.Е.Кореннов, И.А.Смирнов, Л.П.Иголка, Н.И.Мамонтов. Теплоснабжение крупного города от загородной ТЭС. Теплоэнергетикап, №11, 1992.

3. Энергетическая стратегия России на период до 2020 г. М., ГУ ИЭС, 2001.

1. Система однотрубного теплоснабжения, включающая паровые турбины электростанций (КЭС, АЭС), магистральные теплопроводы, поставляющие нагретую сетевую воду в обслуживаемый город, и внутригородские системы и устройства, использующие теплоту и химически очищенную сетевую воду для городских нужд, отличающаяся тем, что в качестве теплоисточника используются парокомпрессионные теплонасосные установки (ТНУ) с рабочим телом термодинамического цикла, имеющим низкие критические параметры, например, диоксидом углерода, который после сжатия в компрессоре находится при сверхкритическом давлении, образующим треугольный цикл Лоренца, в качестве низкопотенциального источника теплоты используется отработавшая теплота турбин электростанций, которая передается к испарителям теплонасосных установок по замкнутому контуру циркуляционной воды, имеющему трубопроводы для поступления и сброса воды в источник технического водоснабжения электростанции, а в качестве теплоносителя - механически очищенная вода из источника технического водоснабжения, которая после предварительного подогрева в первой ступени теплообменника-нагревателя теплонасосной установки поступает на химводоочистку и затем догревается во второй ступени.

2. Система теплоснабжения по п.1, отличающаяся тем, что мощность газотурбинного привода ТНУ превышает приводную мощность и используется для дополнительной выработки электроэнергии.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано в комбинированных системах теплоэлектроснабжения для повышения эффективности утилизации тепловых отходов и источников низкопотенциального тепла.

Изобретение относится к установке для подогрева сетевой воды с устройством для нагрева воды под воздействием энергии окружающей среды, причем вода может накапливаться в резервуаре, например в цистерне для дождевой воды и т.п.

Изобретение относится к области теплоэнергетики и водоснабжения городов и может быть использовано при снабжении потребителей теплотой для отопления, горячей и холодной водой питьевого качества.

Изобретение относится к области энергетики и может быть использовано при теплоснабжении. .

Изобретение относится к вентиляционно-отопительной технике и позволяет повысить экономичность путем уменьшения затрат топлива для обеспечения тепловых нагрузок.

Изобретение относится к автономным системам теплоснабжения. .

Изобретение относится к теплоэнергетике, в частности к установкам отопления и горячего водоснабжения небольших производственных помещений, индивидуальных жилых домов, отдельных сооружений при использовании низкопотенциальных природных источников тепла, хозбытовых стоков и других тепловых отходов

Изобретение относится к области строительства и может быть использовано для энергетического и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения

Изобретение относится к области теплоэнергетики и может быть использовано для повышения эффективности и надежности работы системы горячего водоснабжения с тепловым насосом, утилизирующим тепло наружного воздуха

Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения

Изобретение относится к энергетике, а именно к централизованному теплоснабжению на основе использования низкопотенциальной теплоты отработавшей воды турбин ГЭС с помощью теплонасосных установок (ТНУ)

Изобретение относится к технологиям и средствам автономного отопления объектов различного назначения с комплексным использованием, на основе скважинных циркуляционных систем закрытого типа и тепловых насосов, низкопотенциальных возобновляемых тепловых источников из окружающей среды

Изобретение относится к теплоаккумуляционной системе. Теплоаккумуляционная система содержит, по меньшей мере, один тепловой резервуар и, по меньшей мере, одно устройство передачи тепловой энергии, выполненное с возможностью, по меньшей мере, время от времени передавать тепловую энергию, по меньшей мере, от одной первой секции теплового резервуара к по меньшей мере, одной второй секции теплового резервуара. По меньшей мере, одно из указанных устройств передачи тепловой энергии представляет собой активное устройство передачи тепловой энергии. Тепловой резервуар имеет выпускное отверстие с разделением на две подающие линии, из которых одна подающая линия присоединена к низкотемпературной части, а другая подающая линия присоединена к высокотемпературной части активного устройства передачи тепловой энергии. Изобретение относится также к способу изменения распределения энергии теплового резервуара, при котором тепловую энергию передают, по меньшей мере, от одной первой секции теплового резервуара, по меньшей мере, к одной второй секции теплового резервуара. 3 н., 9 з.п. ф-лы, 3 ил.

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса. Согласно способу избыточно выработанная электрическая энергия переводится в тепловую энергию и с избыточно выработанной тепловой энергией используется для хемотермического аккумулирования энергии в абсорбционном тепловом насосе. При этом для получения тепла аккумулированный в конденсаторе жидкий хладагент направляется в абсорбер. Технический результат - возможность аккумулирования как тепловой, так и электрической энергии при суточном маневрировании отпуска энергии потребителю. 1 ил.
Наверх