Способ управления многозонным выпрямителем однофазного переменного тока

Изобретение относится к электротехнике и может быть использовано на электроподвижном составе, получающем питание от контактной сети однофазного переменного тока. Технический результат заключается в разработке способа с высоким коэффициентом мощности на всех зонах регулирования, включая и 1-ю зону, за счет полного перевода в ней на интервале времени от 0 до αрег накопленной энергии индуктивности цепи выпрямленного тока в нагрузку. Сущность изобретения заключается в регулировании выпрямленного напряжения и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й и последующих зонах, при этом при регулировании выпрямленного напряжения в 1-й зоне на тиристоры двух плеч катодной группы моста этой зоны подают импульсы управления с регулируемым углом αрег, а дополнительный перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляют путем шунтирования цепи выпрямленного тока этой зоны неуправляемым вентилем. 3 ил.

 

Изобретение относится к электротехнике, в частности к преобразовательной технике, и может быть использовано на электроподвижном составе, получающем питание от контактной сети однофазного переменного тока.

Эксплуатация многозонных выпрямителей на электроподвижном составе, построенных на управляемых вентилях-тиристорах, сопровождается невысокими энергетическими показателями (коэффициенты мощности и полезного действия) за счет большого угла сдвига фаз ϕ между первой гармоникой тока и напряжением в первичной обмотке трансформатора, а также большого искажения формы кривой синусоидального напряжения сети на их токоприемниках. Это вызывает значительное потребление выпрямителями реактивной энергии сети.

Большая величина угла ϕ вызывается достаточно большими величинами нерегулируемого угла α0 (величина минимального нерегулируемого фазового сдвига импульса управления относительно нуля напряжения), необходимого для отпирания управляемых вентилей, и угла γ естественной основной коммутации тока вентилей, вызываемого большими величинами токов в нагрузке (тяговых двигателях) и индуктивного сопротивления цепи переменного тока выпрямителя.

Известны различные пути повышения коэффициента мощности выпрямителя за счет уменьшения угла ϕ. Одним из таких путей является уменьшение длительности угла γ естественной основной коммутации тока вентилей, происходящей при смене полупериодов переменного напряжения сети и приводящей к уменьшению угла ϕ.

Известен способ управления [1] многозонным выпрямителем однофазного переменного тока, содержащим четыре зоны на основе параллельных тиристорных мостов.

Способ заключается в регулировании выпрямленного напряжения выпрямителя на всех зонах регулирования и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку.

Для регулирования выпрямленного напряжения в 1-й зоне на интервале времени от α0 до π импульсы управления с нерегулируемым углом α0 подают на тиристоры двух плеч катодной группы моста этой зоны, а импульсы управления с регулируемым углом αрег - на тиристоры двух плеч анодной группы моста.

Для регулирования выпрямленного напряжения во 2, 3 и 4-й зонах на тиристоры всех плеч моста каждой предыдущей зоны подают импульсы управления с нерегулируемым углом α0, а на тиристоры двух плеч другого моста, образующих последующую зону, подают импульсы управления с регулируемым углом αрег.

Для перевода накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й зоне в каждом полупериоде напряжения сети эту цепь шунтируют тиристорами двух плеч, на которые подают соответственно импульсы с углами α0 и αрег. В результате перевод накопленной энергии в нагрузку осуществляют на интервале времени от α0 до αрег.

Накопленная энергия индуктивности цепи выпрямленного тока в интервале времени от 0 до α0 на 1-й и последующих зонах передается только в сеть.

Перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й зоне на интервале времени от α0 до αрег улучшает энергетические показатели выпрямителя на этой зоне, что является достоинством данного способа управления.

Однако на интервале времени от 0 до α0 во всех зонах регулирования перевод накопленной энергии происходит только в сеть, что приводит к дополнительному потреблению реактивной энергии из сети и сохранению большой величины угла сдвига фаз ϕ. В результате энергетические показатели выпрямителя снижаются и, в частности, снижается коэффициент мощности выпрямителя. Так, в номинальном режиме работы выпрямителя на 4-й зоне он равен 0,84.

Наиболее близким к заявляемому решению по совокупности существенных признаков и достигаемому результату является способ управления [2] многозонным выпрямителем однофазного переменного тока, содержащим четыре зоны на основе параллельных тиристорных мостов, с шунтированием цепи выпрямленного тока нагрузки неуправляемым вентилем на 2, 3 и 4-й зонах регулирования.

Способ заключается в регулировании выпрямленного напряжения выпрямителя на всех зонах регулирования и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку.

Для регулирования выпрямленного напряжения в 1-й зоне на интервале времени от α0 до π на тиристоры двух плеч катодной группы моста подают импульсы управления с нерегулируемым углом α0, а на тиристоры двух плеч анодной группы моста - импульсы управления с регулируемым углом αрег.

Для регулирования выпрямленного напряжения во 2, 3 и 4-й зонах на тиристоры всех плеч моста каждой предыдущей зоны подают импульсы управления с нерегулируемым углом α0, а на тиристоры двух плеч другого моста, образующих последующую зону, подают импульсы управления с регулируемым углом αрег.

Для перевода накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й зоне в каждом полупериоде напряжения сети эту цепь шунтируют тиристорами двух плеч, на которые подают соответственно импульсы с углами α0 и αрег. В результате перевод накопленной энергии в нагрузку осуществляют на интервале времени от α0 до αрег.

Для перевода накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 2, 3 и 4-й зонах в интервале времени от 0 до α0 эту цепь шунтируют неуправляемым вентилем.

Известный способ управления тиристорами плеч на 1-й зоне регулирования позволяет переводить в нагрузку накопленную энергию индуктивности цепи выпрямленного тока на интервале времени от α0 до αрег, а на 2, 3 и 4-й зонах регулирования - переводить ее в нагрузку на интервале времени от 0 до α0. Перевод накопленной энергии в нагрузку приводит к полезному использованию выпрямителем этой энергии и повышению, таким образом, коэффициента мощности выпрямителя. Так, в номинальном режиме работы выпрямителя на 4-й зоне он повышается с 0,84 до 0,86.

Однако на 1-й зоне осуществляется только частичный перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку, что приводит к дополнительному потреблению реактивной энергии из сети на этой зоне и сохранению достаточно большой величины угла сдвига фаз ϕ. В результате, энергетические показатели выпрямителя снижаются и, в частности, снижается коэффициент мощности выпрямителя. Так, на 1-й зоне коэффициент мощности в среднем не превышает 0,5.

Задача, решаемая изобретением, заключается в разработке способа управления многозонным выпрямителем однофазного переменного тока с высоким коэффициентом мощности на всех зонах регулирования, включая и 1-ю зону, за счет полного перевода в ней на интервале времени от 0 до αрег накопленной энергии индуктивности цепи выпрямленного тока в нагрузку.

Для решения поставленной задачи в способе управления многозонным выпрямителем, содержащим несколько зон на основе параллельных тиристорных мостов, заключающийся в регулировании выпрямленного напряжения и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й и последующих зонах, причем на 1-й зоне регулирование выпрямленного напряжения осуществляют путем подачи импульсов управления с регулируемым углом αрег на тиристоры двух плеч анодной группы моста этой зоны и перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку - в интервале времени от α0 до αрег, а на 2-й и последующих зонах регулирование выпрямленного напряжения осуществляют путем подачи импульсов управления с нерегулируемым углом α0 на тиристоры всех плеч моста каждой предыдущей зоны и подачи импульсов управления с регулируемым углом αрег на тиристоры двух плеч, образующих последующую зону, и перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляют путем шунтирования цепи выпрямленного тока неуправляемым вентилем, при регулировании выпрямленного напряжения в 1-й зоне на тиристоры двух плеч катодной группы моста подают импульсы управления с регулируемым углом αрег, а дополнительный перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляют путем шунтирования цепи выпрямленного тока этой зоны неуправляемым вентилем.

Подача импульсов управления с регулируемым углом αрег на тиристоры двух плеч катодной группы моста 1-й зоны при регулировании выпрямленного напряжения и шунтирование цепи выпрямленного тока этой зоны неуправляемым вентилем при переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 отличают заявляемое решение от прототипа. Наличие существенных отличительных признаков свидетельствует о соответствии заявляемого решения критерию патентоспособности «новизна».

Благодаря подаче импульсов управления с регулируемым углом αрег на тиристоры двух плеч катодной группы моста 1-й зоны при регулировании выпрямленного напряжения и шунтированию цепи выпрямленного тока этой зоны неуправляемым вентилем при переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляется полный перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку в 1-й зоне на интервале времени от 0 до αрег, что повышает коэффициент мощности на всех зонах регулирования.

Это обусловлено следующим. Неуправляемый вентиль, шунтирующий цепь выпрямленного тока на 1-й зоне, вступает в работу при смене полупериодов сразу в момент изменения полярности переменного напряжения сети при наличии минимального положительного напряжения, прикладываемого к его p-n переходу. В результате через него на интервале от 0 до до αрег осуществляется перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку.

Одновременно с этим вступление в работу неуправляемого вентиля приводит к раннему началу основной коммутации токов вентилей выпрямителя на этой зоне. Такое раннее начало основной коммутации приводит в данном полупериоде напряжения и к более раннему окончанию работы тиристоров плеч, открытых импульсами управления с углом αрег в предыдущий полупериод напряжения.

В результате на всех зонах регулирования происходит более ранний проход переменного тока в первичной обмотке трансформатора через нуль. Это в свою очередь приводит к уменьшению угла ϕ и соответственно к увеличению коэффициента мощности выпрямителя.

Причинно-следственная связь «подача импульсов управления с углом αрег на тиристоры всех плеч 1-й зоны и шунтирование на ней цепи выпрямленного тока неуправляемым вентилем - раннее окончание работы тиристоров плеч, открытых импульсами управления с углом αрег в предыдущий полупериод напряжения - ранний проход переменного тока в первичной обмотке трансформатора через нуль на всех зонах - увеличение коэффициента мощности выпрямителя» явно не вытекает из существующего уровня техники и является новой.

Наличие новой причинно-следственной связи «существенные отличительные признаки - результат» свидетельствует о соответствии заявляемого решения критерию патентоспособности «изобретательский уровень».

На фиг.1 представлена принципиальная электрическая схема многозонного выпрямителя однофазного переменного тока по заявляемому способу управления.

На фиг.2 показаны процессы работы многозонного выпрямителя на 1-й зоне регулирования по заявляемому способу управления.

На фиг.3 показаны процессы работы многозонного выпрямителя на 4-й зоне регулирования по заявляемому способу управления.

Заявляемый способ управления многозонным выпрямителем однофазного переменного тока осуществляется в устройстве, содержащем трансформатор, многозонный выпрямитель на основе параллельных тиристорных мостов, неуправляемый вентиль и цепь выпрямленного тока нагрузки.

Трансформатор имеет первичную обмотку 1, подключенную к источнику питающего напряжения сети, и вторичную обмотку, выполненную в виде нескольких последовательно соединенных секций 2, 3, 4, 5 и 6 с равным количеством витков и выводами от каждой из них. Количество секций равно числу зон регулирования.

Многозонный выпрямитель выполнен из параллельных тиристорных мостов, состоящих из нескольких цепочек. Каждая цепочка содержит пару 7-8, 9-10, 11-12, 13-14, 15-16 и 17-18 последовательно соединенных тиристорных плеч, образующих анодную 19 и катодную 20 группы, и подключенных крайними точками между шинами 21 и 22 постоянного тока параллельно неуправляемому вентилю 23 и цепи 24 выпрямленного тока нагрузки, а средними точками - к соответствующим выводам вторичной обмотки трансформатора. Цепь 24 выпрямленного тока нагрузки включает сглаживающий реактор 25 и тяговый двигатель постоянного тока 26.

Способ управления многозонным выпрямителем заключается в регулировании выпрямленного напряжения и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на всех зонах регулирования.

При регулировании выпрямленного напряжения на 1-й зоне в 1-й полупериод напряжения, обозначенный на фиг.1 сплошной стрелкой, на тиристоры катодного плеча 7 и анодного плеча 10 подают импульсы управления с регулируемым углом αрег (см. фиг.2). Тиристоры этих плеч отпираются и заставляют коммутировать (закрыться) с длительностью угла γр регулируемой коммутации неуправляемый вентиль 23, который был открыт с начала данного полупериода напряжения (ωt=0). Через открытый неуправляемый вентиль 23 на интервале от ωt=0 до ωt=αрегр происходит перевод накопленной энергии индуктивности цепи 24 выпрямленного тока в нагрузку 26.

Тиристоры плеч 7 и 10 проводят выпрямленный ток нагрузки на интервале от ωt=αрегр до ωt=π. При достижении окончания этого полупериода напряжения (ωt=π) снова вступает в работу неуправляемый вентиль 23. Своим отпиранием в этот момент неуправляемый вентиль 23 заставляет коммутировать (закрываться) с длительностью угла γ основной коммутации работающие тиристоры плеч 7 и 10. В момент ωt=π+αрег следующего полупериода напряжения, обозначенного на фиг.1 пунктирной стрелкой, на тиристоры анодного плеча 8 и катодного плеча 9 подают импульсы управления с углом αрег. Тиристоры этих плеч отпираются и заставляют коммутировать (закрыться) с длительностью угла γр регулируемой коммутации неуправляемый вентиль 23, который был открыт с начала данного полупериода напряжения (ωt=π). Через открытый неуправляемый вентиль 23 на интервале от ωt=π до ωt=π+(αрегp) происходит перевод накопленной энергии индуктивности цепи 24 выпрямленного тока в нагрузку 26.

Тиристоры плеч 8 и 9 проводят выпрямленный ток нагрузки на интервале от ωt=π+(αрегp) до ωt=2π. При достижении окончания этого полупериода напряжения (ωt=2π) снова вступает в работу неуправляемый вентиль 23. Своим отпиранием в этот момент неуправляемый вентиль 23 заставляет коммутировать (закрываться) с длительностью угла γ основной коммутации работающие тиристоры плеч 8 и 9.

Далее циклы работы выпрямителя на 1-й зоне повторяются.

При регулировании выпрямленного напряжения во 2-й и последующих зонах на тиристоры всех плеч моста каждой предыдущей зоны подают импульсы управления с нерегулируемым углом α0, а на тиристоры двух плеч другого моста, образующих последующую зону, подают импульсы управления с регулируемым углом αрег. Так например, на 4-й зоне в 1-й полупериод напряжения, обозначенный на фиг.1 сплошной стрелкой, на тиристоры катодного плеча 7 и анодного плеча 14 подают импульсы управления с регулируемым углом α0 (см. фиг.3). Тиристоры этих плеч отпираются и заставляют коммутировать (закрыться) с длительностью угла γ2 основной коммутации неуправляемый вентиль 23, который вступил в работу с начала данного полупериода (ωt=0). Через открытый неуправляемый вентиль 23 на интервале от ωt=0 до ωt=α02 происходит перевод накопленной энергии индуктивности цепи 24 выпрямленного тока в нагрузку 26. Далее на тиристоры анодного плеча 16 подают импульсы управления С углом αрег. Тиристоры этого плеча отпираются и заставляют коммутировать (закрыться) с длительностью угла γр тиристоры плеча 14. Тиристоры плеч 7 и 16 проводят выпрямленный ток нагрузки на интервале от ωt=рег+γр) до ωt=π.

В момент π снова вступает в работу неуправляемый вентиль 23, который заставляет коммутировать (закрыться) с длительностью углов γ12 основной коммутации тиристоры плеча 16 и с длительностью углов γ123 основной коммутации тиристоры плеча 7.

В момент ωt=π+α0 следующего полупериода напряжения, обозначенного на фиг.1 пунктирной стрелкой, на тиристоры анодного плеча 8 и катодного плеча 13 подают импульсы управления с нерегулируемым углом α0. Тиристоры этих плеч отпираются и заставляют коммутировать (закрыться) с длительностью угла γ2 неуправляемый вентиль 23, который был открыт с начала данного полупериода (ωt=π). Через открытый неуправляемый вентиль 23 на интервале от ωt=π до ωt=π+(α02) происходит перевод накопленной энергии индуктивности цепи 24 выпрямленного тока в нагрузку 26. Далее в момент ωt=π+αрег подают импульсы управления с углом αрег на тиристоры катодного плеча 15, которые отпираются и заставляют коммутировать (закрыться) с длительностью угла γр тиристоры катодного плеча 13. Тиристоры плеч 8 и 15 проводят выпрямленный ток нагрузки на интервале от ωt=π+(αрегр) до ωt=2π. В момент 2π снова вступает в работу неуправляемый вентиль 23, который заставляет коммутировать (закрыться) с длительностью углов γ12 основной коммутации тиристоры плеча 15 и с длительностью углов γ123 основной коммутации тиристоры плеча 8.

В дальнейшем, начиная с момента ωt=2π+α0, процессы повторяются.

Таким образом, заявляемый способ управления многозонным выпрямителем однофазного переменного тока позволяет осуществить подачу в 1-й зоне на тиристоры двух плеч как анодной, так и катодной групп моста импульсов управления с регулируемым углом αрег, что упрощает алгоритм управления выпрямителем. При наличии на 1-й и последующих зонах неуправляемого вентиля, который шунтирует цепь выпрямленного тока нагрузки, заявляемый способ управления позволяет перевести на 1-й зоне в интервале времени от 0 до αрег, а на 2-й и последующих зонах в интервале времени от 0 до α0 накопленную энергию индуктивности цепи выпрямленного тока в нагрузку. Это приводит к уменьшению угла сдвига фаз ϕ, а значит к снижению потребления выпрямителем реактивной энергии и повышению его коэффициента мощности.

В результате, в номинальном режиме работы выпрямителя на высшей зоне угол сдвига фаз ϕ уменьшается на 4 эл. град., что повышает коэффициент мощности выпрямителя с 0,86 до 0,88.

Заявляемый способ управления многозонным выпрямителем однофазного переменного тока был испытан на электровозе ВЛ-85 №230 в локомотивном депо Улан-Удэ. Испытания показали надежную работу выпрямителя и повышение коэффициента мощности многозонного выпрямителя в первой зоне в среднем на 15%, а на 2-й и последующих зонах в среднем на 2%.

Источники информации, принятые во внимание:

1. Электровоз ВЛ80Р. Руководство по эксплуатации / Под ред. Б.А. Тушканова, М.: Транспорт, 1985. - С.75-115.

2. Авторское свидетельство СССР №590843, кл. Н02Р 13/16, В60L 9/12. Способ управления тиристорным преобразователем. Опубл. 30.01.1978. Бюл. №4.

Способ управления многозонным выпрямителем однофазного переменного тока, содержащим несколько зон на основе параллельных тиристорных мостов, заключающийся в регулировании выпрямленного напряжения и в переводе накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на 1-й и последующих зонах, причем на 1-й зоне регулирование выпрямленного напряжения осуществляют путем подачи импульсов управления с регулируемым углом αрег на тиристоры двух плеч анодной группы моста этой зоны и перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку - в интервале времени от α0 до αрег, а на 2-й и последующих зонах регулирование выпрямленного напряжения осуществляют путем подачи импульсов управления с нерегулируемым углом α0 на тиристоры всех плеч моста каждой предыдущей зоны и подачи импульсов управления с регулируемым углом αрег на тиристоры двух плеч, образующих последующую зону, и перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляют путем шунтирования цепи выпрямленного тока неуправляемым вентилем, отличающийся тем, что при регулировании выпрямленного напряжения в 1-й зоне на тиристоры двух плеч катодной группы моста этой зоны подают импульсы управления с регулируемым углом αрег, а дополнительный перевод накопленной энергии индуктивности цепи выпрямленного тока в нагрузку на интервале времени от 0 до α0 осуществляют путем шунтирования цепи выпрямленного тока этой зоны неуправляемым вентилем.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно - к статическим преобразователям с жесткими требованиями по степени защиты по коду IP (IP54, IP64) в соответствии с ГОСТ 14254-96, к статическим преобразователям, работающим в широком диапазоне температур окружающего воздуха от -60°С до +50°С, к мощным статическим полупроводниковым преобразователям электроэнергии с принудительным комбинированным охлаждением.

Изобретение относится к электротехнике и может быть использовано в системах управления источников питания с квазисинусоидальным выходным напряжением. .

Изобретение относится к электротехнике и может быть использовано в системах вторичного электропитания и автоматики. .

Изобретение относится к электротехнике , в частности к силовой полупроводниковой преобразовательной технике. .

Изобретение относится к электротехнике и может быть использовано в системах вторичного электропитания и электропривода. .

Изобретение относится к электротехнике и может быть применено в преобразователях частоты со звеном постоянного тока и устройствах их защиты. .

Изобретение относится к преобразовательной технике, в частности к системам управления вентильными преобразователями, и может быть использовано для управления автономными инверторами.

Изобретение относится к преобразовательной технике и может быть использовано для управления регулируемыми источниками питания, например, для индукционного нагрева металлов.

Изобретение относится к электротехнике и предназначено для повышения коэффициента мощности электроподвижного состава переменного тока с зонно-фазовым регулированием напряжения.

Изобретение относится к области электротехники и может быть использовано в выпрямительных установках с принудительной коммутацией, в качестве входных преобразователей на электроподвижном составе переменного тока.

Изобретение относится к электротехнике, к векторному регулированию входных преобразователей электроподвижного состава переменного тока, и может быть использовано для регулирования заданных параметров четырехквадрантного преобразователя при изменяющейся нагрузке.

Изобретение относится к электротехнике и может быть использовано на электроподвижном составе переменного тока для повышения коэффициента мощности электровоза. .

Изобретение относится к электротехнике и может быть использовано на электроподвижном составе переменного тока с тиристорными преобразователями. .

Изобретение относится к электротехнике и может быть использовано на электроподвижном составе переменного тока для повышения коэффициента мощности электровоза. .

Изобретение относится к электрифицированному транспорту и предназначено для использования на электроподвижном составе переменного тока при сильных искажениях формы кривой питающего напряжения.

Изобретение относится к области транспортного машиностроения и может быть использовано в тяговых электроприводах транспортных средств, например троллейбусов, трамваев, метрополитена и электробусов
Наверх