Способ превращения полисульфанов

Изобретение относится к способу удаления полисульфанов из газовых потоков. Полисульфаны из сырого газа, образующегося во время получения сульфида водорода с содержанием более 80 об.% Н2S и от более 100 до 2000 об.част./млн, преимущественно от более 400 до 1500 об.част./млн, полисульфанов H2Sn, где n обозначает число от 2 до 8, удаляют путем пропускания сырого газа через промывочную систему. При этом вводят в контакт сырой газ с водой и/или метанолом и получают чистый газ. Изобретение позволяет повысить степень очистки газов от полисульфанов. 8 з.п. ф-лы.

 

Область техники, к которой относится изобретение

Изобретение относится к способу удаления полисульфанов из газовых потоков, образующихся во время синтеза H2S.

Предпосылки создания изобретения

В процессах синтеза H2S из водорода и серы в качестве побочных продуктов в сыром газе в концентрации примерно ≥400 об.част./млн (объемных частей на миллион) обычно содержатся полисульфаны (H2Sn), которые, когда газовый поток сжимают, проявляют тенденцию к нерегулируемому разложению на Н2S и серу. Это приводит к образованию нежелательных отложений серы во всей зоне сжатия, включая периферийные патрубки и клапаны.

Известно, что полисульфаны термодинамически нестабильны и проявляют тенденцию к разложению, в частности при нагревании (см. M.Schmidt, W.Siebert: "Sulfane" в Comprehensive Inorganic Chemistry, vol.2, sect. 2.1, Pergamon Press, Oxford 1973, 826-842).

К осаждению элементарной серы приводят следы щелочи на поверхности стеклянных сосудов.

Однако это было установлено в результате исследований на полисульфанах, находящихся в более или менее чистой форме.

В принципе, разумеется, результаты исследований применимы к полисульфанам, содержащимся в высокоразбавленном состоянии.

Однако в этом случае следует принимать в расчет влияние значений концентрации.

В вышеуказанных обстоятельствах полисульфаны находятся в значительном разбавлении в сульфиде водорода, который в то же самое время является продуктом разложения полисульфанов при термодинамическом равновесии:

При высокой концентрации H2S представляется возможным сдвиг равновесия влево, а реакция разложения полисульфанов на сульфид водорода и серу оказывается не предпочтительной.

Объектом изобретения является разработка способа практически полного удаления полисульфанов и, таким образом, предотвращение отложения серы в патрубках установки.

Краткое изложение сущности изобретения

По изобретению предлагается способ удаления полисульфанов из сырого газа, образующегося во время получения сульфида водорода, характеризующийся тем, что сырой газ с содержанием >80 об.част., предпочтительно >95 об.част., H2S и от >100 до 2000 об.част./млн, в частности от >400 до 15000 об.част./млн, полисульфанов (Н2Sn, где n обозначает число от 2 до 8), пропускают через необязательно многостадийную промывочную систему, вводят в контакт с водой и/или метанолом, предпочтительно с основными водными и/или метанольными системами, и получают чистый газ, в котором уменьшение количества полисульфанов составляет от >50 до >99,5% в пересчете на исходный значение.

Количества полисульфанов могут также необязательно превышать 2000 об.част./млн.

Подробное описание изобретения

В предпочтительном варианте применяют струйные промывные аппараты, которые, подобно другим промывным аппаратам, могут работать под абсолютным давлением от 1,05 до 10 бар, предпочтительно от 1,05 до 2 бар.

Однако альтернативой является процесс без повышенного давления. В качестве промывной жидкости используют, в частности, водные и/или метанольные концентрацией от 0,5 до 20 мас.%, предпочтительно от 0,5 до 10 мас.%, растворы гидроксидов или оксидов щелочных металлов, преимущественно растворы KOH/KHS или NaOH/NaHS.

При прохождении газовых потоков через промывную жидкость образуются сульфиды водорода.

Соответственно могут быть также использованы концентрированные растворы других основных оксидов или гидроксидов, преимущественно гидроксидов или оксидов щелочно-земельных металлов, предпочтительно кальция.

Полисульфаны из газовых потоков удаляют также основными водными и/или метанольными концентрацией от 1 до 20 мас.%, предпочтительно от 1 до 10 мас.%, растворами аммиака, органических аминов общей формулы (CnH2n+1)xNHY, где n обозначает 1, 2, 3; x обозначает 2, 3; у обозначает 0, 1, или аминоспиртов общей формулы (CnH2n+1O)xNHy, где n обозначает 1, 2, 3; x обозначает 2, 3; у обозначает 0, 1.

Приемлемый температурный диапазон обычно находится в пределах 0 и 150°С, преимущественно 10 и 60°С.

При газовых скоростях очищаемого сырого газа обычно в пределах 0,1 и 25 м/с, преимущественно 10 и 22 м/с, полисульфаны удаляют из газовых потоков со степенью уменьшения их количества от >50 до >99,5%, предпочтительно от >70 до >99,5%, в пересчете на исходное содержание в сыром газе.

В случае содержания >500 об.част./млн в сыром газе это соответствует уменьшению количества до <10 об.част./млн в чистом газе.

Сера, образующаяся во время превращения полисульфанов, переходит в раствор в результате, помимо прочего, образования соответствующих полисульфидов. Сера, выпавшая в осадок в твердой форме, может быть необязательно удалена с помощью приемлемых фильтрующих устройств.

Циркуляцию промывного раствора и его удаление осуществляют в зависимости от содержания полисульфида/серы. Промывную жидкость доливают в зависимости от скорости удаления и количеств растворителя, который может испариться. Для удаления всех остаточных количеств полисульфанов, содержащихся после струйного промывного аппарата (обычно ≤20% от первоначального количества), содержащий H2S газ обычно подвергают последующей обработке вышеупомянутыми растворами в промывной колонне или в колонне с насадкой по принципу противотока (противоточный промывной аппарат). Захватываемые капельки отделяют с помощью каплеотбойной системы. Все количества сульфана, остающегося в газовом потоке очищенного Н2S, могут быть также устранены в последующем по ходу процесса адсорбционном слое (активированный уголь, цеолит), а образующуюся серу можно выделять.

Анализ

Аналитические данные, касающиеся концентрации сульфана в сыром и чистом газе, получают с помощью установленных на технологической линии средств УФ-анализа. Параллельно этому содержание серы в промывном растворе и концентрацию сульфана и серы в содержащем H2S газовом потоке по мере потребности определяют по "мокрому" химическому методу.

С помощью способа в соответствии с изобретением существует возможность понизить концентрацию полисульфанов до такого уровня, при котором устраняется потребность в последующих процессах, например в компрессорных стадиях, и нежелательные отложения серы.

Примеры

Используют сырые газы с содержанием полисульфана от >400 до 2000 об.част./млн.

Концентрации полисульфана зависят от реакционных условий в реакторе для Н2S.

Сравнительный пример 1

Сырой газ, содержащий Н2S и полисульфаны, пропускали через адсорбционную колонну, заполненную в качестве насадки приблизительно 7 л протравленных колец Рашига, при 20 Нм3/ч. Сера, образовавшаяся вследствие разложения полисульфанов, осаждалась на поверхности элементов насадки.

Добивались 25%-ной степени уменьшения количества полисульфанов в газе. Срок службы адсорбционного слоя составлял 20 ч.

Сравнительный пример 2

Сырой газ, содержащий H2S и полисульфаны, пропускали через адсорбционную колонну, заполненную в качестве насадки приблизительно 7 л носителя из SiO2 (размер частиц: от 3 до 5 мм), при 20 Нм3/ч. Сера, образовывавшаяся вследствие разложения полисульфанов, осаждалась на поверхности элементов насадки. Добивались 50%-ной степени уменьшения количества полисульфанов в газе. Срок службы адсорбционного слоя составлял 48 ч.

Пример 1

Сырой газ, содержащий H2S и полисульфаны, вначале пропускали через струйную промывочную систему, работавшую только с водой, а затем через адсорбционную колонну, заполненную в качестве насадки приблизительно 12 л активированного угля (размер частиц: от 5 до 6 мм), при 200 Нм3/ч в течение 60 ч. Перед вхождением в адсорбционную колонну степень уменьшения количества полисульфанов в газе составляла 75%, а после колонны это значение, по определению, было равным >99%.

Пример 2

Сырой газ, содержащий H2S и полисульфаны, пропускали через струйную промывочную систему, снабжаемую метанолом, при 200 Нм3/ч в течение 48 ч. Достигали степени уменьшения количества >50% полисульфанов в газе, в пересчете на сырой газ.

Пример 3

Сырой газ, содержащий H2S и полисульфаны, пропускали через промывную колонну, работавшую со смесью метанола/триэтаноламина (5% триэтаноламина), в течение 24 ч при 10 Нм3/ч. Сера, образовывавшаяся в результате разложения полисульфанов, растворялась в промывном растворе. Добивались 80%-ной степени уменьшения количества полисульфанов в газе.

Пример 4

Сырой газ, содержащий H2S и полисульфаны, пропускали через струйную промывочную систему, снабжаемую смесью метанола/NaOH (5% NaOH), в течение 400 ч при 200 Нм3/ч. Добивались 99%-ной степени уменьшения количества полисульфанов в газе.

Серу, которая осаждалась по прошествии приблизительно 200 ч времени эксперимента, удаляли из циркуляционной системы промывного аппарата с помощью фильтрования в технологической линии.

Пример 5

Сырой газ, содержащий H2S и полисульфаны, пропускали через струйную промывочную систему, снабжаемую смесью воды/КОН (12% КОН), в течение 200 ч при 200 Нм3/ч. Добивались 99,5%-ной степени уменьшения количества полисульфанов в газе.

1. Способ удаления полисульфанов из сырого газа, образующегося во время получения сульфида водорода, отличающийся тем, что сырой газ с содержанием более 80 об.% Н2S и от более 100 до 2000 об.част./млн, преимущественно от более 400 до 1500 об.част./млн, полисульфанов H2Sn, где n обозначает число от 2 до 8, пропускают через промывочную систему, при этом вводят в контакт с водой и/или метанолом и получают чистый газ.

2. Способ по п.1, отличающийся тем, что в качестве промывной жидкости используют водные и/или метанольные растворы гидроксида или оксида щелочного или щелочно-земельного металла концентрацией от 0,5 до 20 мас.%.

3. Способ по п.1, отличающийся тем, что в качестве промывной жидкости используют водные и/или метанольные растворы органических аминов общей формулы (CnH2n+1)xNHY, где n обозначает 1, 2, 3; x обозначает 2, 3; у обозначает 0,1; аминоспиртов общей формулы (CnH2n+1O)xNHY, где n обозначает 1, 2, 3; x обозначает 2, 3; у обозначает 0, 1; или аммиака концентрацией от 1 до 20 мас.%.

4. Способ по одному или нескольким пп.1-3, отличающийся тем, что в промывочной системе применяют струйный промывной аппарат.

5. Способ по п.1, отличающийся тем, что предварительно очищенный газ подвергают последующей обработке в противоточном промывном аппарате водными или метанольными растворами.

6. Способ по п.1, отличающийся тем, что после промывочной системы газ, в котором уменьшено количество полисульфанов, пропускают через адсорбционный слой.

7. Способ по п.1, отличающийся тем, что количество полисульфанов, содержащихся в сыром газе, уменьшают от более 50 до более 99,5% в пересчете на сырой газ.

8. Способ по одному или нескольким пп.1-3 и 5-7, отличающийся тем, что промывку газа проводят при температуре от 0 до 150°С.

9. Способ по п.4, отличающийся тем, что промывку газа проводят при температуре от 0 до 150°С.



 

Похожие патенты:
Изобретение относится к очистке сероводорода, полученного реакцией водорода с жидкой серой. .

Изобретение относится к методам аналитического контроля качества нефти, нефтепродуктов и газового конденсата и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности.

Изобретение относится к получению одорантов для природного газа, в частности к безотходному способу получения метилмеркаптана, а также к способу получения катализатора, обеспечивающего более высокую степень взаимодействия метилового спирта и сероводорода и использованию такого способа получения сероводорода, который обеспечивает безотходность производства в целом.

Изобретение относится к методам аналитического контроля и может найти применение в нефте- и газоперерабатывающей промышленности для определения количественного содержания сероводорода в мазуте.

Изобретение относится к технологии электрохимических производств. .

Изобретение относится к способам переработки серной кислоты до сероводорода. .
Изобретение относится к способу непрерывного получения метилмеркаптана из сероводорода и метанола в непосредственном сочетании с получением сероводорода, для чего выходящую под давлением из реактора синтеза сероводорода реакционную смесь смешивают с метанолом и полученную смесь подают под давлением в реактор синтеза метилмеркаптана с созданием при этом между используемыми для обоих процессов синтеза реакторами перепада давлений, под действием которого поток смеси сероводорода и метанола принудительно движется в направлении реактора синтеза метилмеркаптана
Изобретение относится к способу получения сероводорода из серы и водорода в реакторе
Изобретение относится к области химии и может быть использовано в газоперерабатывающей промышленности для удаления полисульфанов из товарной серы

Изобретение относится к способу получения серной кислоты, при этом в установке для производства серной кислоты получают исходный газ, содержащий SO2, который пропускают, по меньшей мере, через один реактор, в котором протекает каталитическая реакция с окислением SO3 в SO2, а из образовавшегося при этом SO3 получают серную кислоту

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама. В качестве вспомогательного агента дезоксидации добавляют один или несколько соединений из сульфата двухвалентного железа, нитрата трехвалентного железа и сульфата трехвалентного железа. TiO2 и γ-Al2O3 добавляют в виде сухого коллоида соединения титан-алюминий. Также описан способ обработки серосодержащего газа катализатором гидрирования. Технический результат - катализатор имеет высокую активность гидрирования диоксида серы и низкую рабочую температуру. 2 н. и 10 з.п. ф-лы, 2 ил., 14 табл., 11 пр.

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой. В качестве соединений железа добавляют водные растворы сульфатов железа в объеме и концентрации, достаточных для образования сульфида железа из сероводорода, ионов сульфидов и гидросульфидов, находящихся в исходной воде. Регенерацию соединений железа проводят обработкой сульфида железа, отделенного от очищенной воды, серной кислотой или водным ее раствором до образования сульфата железа и газообразного сероводорода, который отводят для получения серной кислоты, используемой при обработке сульфида железа. Полученный сульфат железа в виде водного раствора направляют для обработки следующей порции очищаемой воды. Изобретение обеспечивает очистку воды до следовых количеств загрязняющих веществ, при этом за счет цикличности процесса реализуют возврат в цикл очистки до 95,7% применяемого сульфата железа, а также отсутствуют газообразные выбросы сероводорода, подлежащие утилизации и переработке. 2 ил., 1 пр.

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода путем проведения экзотермической реакции серы и водорода содержит нижнюю часть (2) для размещения расплава (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5a), подводящему под давлением газообразный водород на каждую первую ловушку, одну или несколько не удерживающих давление вторых ловушек (8), расположенных над первой(-ыми) ловушкой(-ами) (4), газосборную часть (6) для размещения газовой смеси, содержащей продукт при повышенных температуре и давлении. По меньшей мере одна из вторых ловушек (8, 10) имеет меньший теплоотвод, чем каждая из первых ловушек (4). В расплав (3) серы подают находящийся под давлением водород, который вместе с серой, перешедшей из расплава в газообразное состояние, улавливают по меньшей мере одной не удерживающей давление первой ловушкой (4). Временно удерживают водород и серу в первой(-ых) ловушке(-ах) (4) с образованием газовой смеси, содержащей сероводород как продукт, серу и водород. Газовую смесь, содержащую продукт, улавливают и, по меньшей мере, временно удерживают в одной или нескольких вторых ловушках (8). Обеспечивают превращение оставшихся в газовой смеси серы и водорода в дополнительный сероводород. Газовую смесь, содержащую продукт, собирают в газосборной части. Реактор (1) применяют для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Изобретение позволяет обеспечить высокую степень превращения и чистоту водорода. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода содержит нижнюю часть (2) с расплавом (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5а), подводящему водород на каждую первую ловушку, газосборную часть (6), пригодную для вмещения газовой смеси, содержащей продукт, один или несколько не удерживающих давление встроенных элементов (7) для непрерывного перемещения всей содержащей продукт газовой смеси, образовавшейся в нижней части (2) реактора, в газосборную часть (6). Один или несколько встроенных элементов содержат гетерогенный катализатор для дальнейшего превращения водорода и серы, присутствующих в содержащем продукт газе, в сероводород. Находящийся под давлением водород подают в расплав (3) серы, который вместе с серой, перешедшей из расплава (3) в газообразное состояние, по меньшей мере частично улавливают по меньшей мере одной не удерживающей давление первой ловушкой (4). Непрерывно перемещают всю содержащую продукт газовую смесь, образовавшуюся в нижней части реактора (2), в газосборную часть (6) посредством одного или нескольких не удерживающих давление встроенных элементов (7). Реактор (1) применяют для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Изобретение позволяет обеспечить степень превращения водорода более 99%, высокую чистоту получаемого сероводорода, компактную конструкцию и широкий диапазон изменения загрузки реактора. 3 н. и 12 з.п. ф-лы, 3 ил.

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1). Подают посредством по меньшей мере одного подводящего устройства (5, 5а) находящийся под давлением водород в расплав серы с образованием газовой смеси. Частично улавливают газовую смесь, содержащую водород и серу, по меньшей мере двумя не удерживающими давление первыми ловушками (4) с образованием в ходе экзотермической реакции газовой смеси P1, содержащей сероводород как продукт, серу и водород. Удерживают газовую смесь P1 в одной или нескольких вторых ловушках (8) с превращением серы и водорода в дополнительный сероводород с образованием газовой смеси P2. Собирают содержащую продукт газовую смесь Рконечн. в газосборной части (6). Обеспечивается повышение степени превращения водорода и чистоты получаемого сероводорода. 3 н. и 12 з.п. ф-лы, 3 ил.

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1). Подают посредством по меньшей мере одного подводящего устройства (5, 5а) находящийся под давлением водород в расплав серы с образованием газовой смеси. Частично улавливают газовую смесь, содержащую водород и серу, по меньшей мере двумя не удерживающими давление первыми ловушками (4) с образованием в ходе экзотермической реакции газовой смеси P1, содержащей сероводород как продукт, серу и водород. Удерживают газовую смесь P1 в одной или нескольких вторых ловушках (8) с превращением серы и водорода в дополнительный сероводород с образованием газовой смеси P2. Подают посредством по меньшей мере одного подводящего устройства (9, 9а) находящийся под давлением водород в расплав серы, который вместе с серой частично улавливают по меньшей мере одной не удерживающей давление второй ловушкой (8). Собирают содержащую продукт газовую смесь Рконечн. в газосборной части (6). Обеспечивается повышение степени превращения водорода и чистоты получаемого сероводорода. 3 н. и 12 з.п. ф-лы, 3 ил.
Наверх