Система наведения зенитных управляемых ракет ближнего действия



Владельцы патента RU 2324139:

Государственное унитарное предприятие "Конструкторское бюро приборостроения" (RU)

Изобретение относится к оборонной технике и может использоваться в зенитных ракетных комплексах для защиты военных и промышленных объектов от низколетящих самолетов, вертолетов и других малоразмерных средств воздушного нападения в пределах ближней тактической зоны. Технический результат - повышение эффективности поражения нескольких малоразмерных низколетящих воздушных целей в ближней тактической зоне залповым пуском ракет в различных погодных условиях и при наличии организованных противником радиопомех. Система наведения ЗУР содержит на командном пункте радиолокационную станцию обнаружения целей, вычислитель, аппаратуру навигации, видеомонитор, пульт управления, подъемно-поворотную платформу с приводами ее наведения и установленной на ней радиолокационной станцией сопровождения с фазированной антенной решеткой, каналами передачи команд управления и каналами пеленгации целей и пеленгации ракет. На каждой ракете содержится радиоприемник, радиоответчик, аппаратура управления, выход которой соединен со входом рулевого привода. На командном пункте дополнительно введены блок управления лучами, оптоэлектронная система, включающая пеленгатор ракет и теплотелевизионный прицел, автомат сопровождения целей и блок синхронизации и кодирования. 1 ил.

 

Предлагаемое изобретение относится к оборонной технике и может использоваться в зенитных ракетных комплексах (ЗРК) для защиты военных и промышленных объектов от низколетящих самолетов, вертолетов, ракет и других малоразмерных средств воздушного нападения в пределах ближней тактической зоны до 30 км.

В настоящее время в нашей стране и за рубежом придается большое значение разработке высокоточных систем наведения зенитных управляемых ракет (ЗУР), обеспечивающих эффективное поражение нескольких малоразмерных воздушных целей в одном залпе. При этом точности наведения ракет в различных погодных условиях и наличии организованных противником помех уделяется первостепенное значение.

Известны ЗРК, в которых используется система наведения (СН) ракет, построенная на основе трехточечного метода телеуправления с определением координат целей и ракет с помощью радиолокационных систем и передачей команд управления на ракеты по командной радиолинии связи. Например, система наведения ЗРК «Patriot» PAC-2 (Jane's Land-Based Air Defence, 2000-2001, pp.308-316), содержащая на командном пункте (КП) радиолокационную станцию (РЛС) поиска, обнаружения целей и наведения ракет, радиопередатчик, вычислитель (цифровой процессор) команд управления, а на ракете - радиоприемник команд, радиоответчик, радиолокационную головку самонаведения (ГСН), аппаратуру управления и рулевой привод.

Основным недостатком указанной СН является:

- низкая вероятность обнаружения низколетящих малоразмерных целей, использующих технологии «стелс»;

- низкая помехоустойчивость в условиях организованных противником радиопомех.

В качестве прототипа заявленному устройству принята СН зенитного комплекса «Акаш» ближнего действия до 27 км (журнал «Зарубежное военное обозрение», №9, 2001, стр.38-40), способная наводить ракеты по нескольким целям. В этой СН реализовано радиокомандное наведение ракет с помощью РЛС и радиолокационной ГСН. Прототип содержит на командном пункте аппаратуру навигации, РЛС поиска, захвата и автосопровождения целей и наведения ракет, вычислитель для управления РЛС и выработки команд управления ракетами, видеомонитор, механизмы вертикального и горизонтального наведения КП, аппаратуру подготовки и пуска ракет, а на ракете содержится радиоприемник, радиоответчик, аппаратура управления и рулевой привод.

Основные недостатки указанной радиолокационной командой СН следующие:

- низкая вероятность обнаружения низколетящих малоразмерных целей, использующих технологии «стелс», делающие их слабоконтрастными в радиолокационном отношении;

- большое время реакции (15 с) из-за низкого разрешения (информативности) и обработки радарной информации, что снижает вероятность поражения маскированных целей в ближней зоне обстрела;

- низкая помехоустойчивость в условиях организованных противником помех;

- возможно поражение ЗРК самонаводящимися противолокационными ракетами.

В настоящее время благодаря развитию микроэлектроники, оптики, вычислительной техники, информативных технологий и систем обработки изображений в разработке СН высокоточного управляемого вооружения находит применение оптоэлектронная система наведения (ОЭС), которая обладает в условиях оптической видимости высокой информативностью о целевой обстановке, высокой точностью наведения ракет, скрытностью, помехоустойчивостью и малым временем реакции, что особенно важно при действии в ближней тактической зоне.

Применение в ЗРК системы наведения на основе объединения радиолокационной и оптоэлектронной систем позволит повысить боевую эффективность ЗРК ближнего действия.

Задачей предлагаемого изобретения является создание СН зенитных управляемых ракет, обеспечивающей эффективное поражение нескольких малоразмерных низколетящих воздушных целей в ближней тактической зоне залповым пуском ракет в различных погодных условиях и при наличии организованных противником помех.

Решение данной задачи достигается тем, что в систему наведения ЗУР ближнего действия, содержащую на командном пункте радиолокационную станцию обнаружения целей, вычислитель, аппаратуру навигации, видеомонитор, пульт управления, подъемно-поворотную платформу с приводами ее наведения и установленной на ней радиолокационной станцией сопровождения с фазированной антенной решеткой, каналами передачи команд управления и каналами пеленгации целей и пеленгации ракет, причем выход радиолокационной станции обнаружения целей соединен с первым входом вычислителя, первый выход которого соединен с первым входом приводов наведения подъемно-поворотной платформы, выходы каналов пеленгации целей и пеленгации ракет соединены соответственно с третьим и четвертым входами вычислителя, выход аппаратуры навигации соединен со вторым входом вычислителя, второй выход которого соединен с первым входом видеомонитора, выход пульта управления соединен со вторым входом приводов наведения, и содержащую на ракете радиоприемник, радиоответчик, аппаратуру управления, выход которой соединен со входом рулевого привода, введены на командном пункте блок управления лучами, оптоэлектронная система, включающая пеленгатор ракет и теплотелевизионный прицел и установленная на подъемно-поворотной платформе, автомат сопровождения целей и блок синхронизации и кодирования, при этом выход пеленгатора ракет соединен с пятым входом вычислителя, а вход - с первым выходом блока синхронизации и кодирования, второй выход которого соединен со входом каналов передачи команд управления, а вход - с третьим выходом вычислителя, четвертый выход которого соединен со входом блока управления лучами, выход которого соединен со вторым входом фазированной антенной решетки, а выход теплотелевизионного прицела соединен со вторым входом видеомонитора и входом автомата сопровождения целей, выход которого соединен с третьим входом приводов наведения, а на ракете введены лазерный ответчик и дешифратор команд управления, первый вход которого соединен с выходом радиоприемника, первый выход - со входом радиоответчика, второй выход - со входом лазерного ответчика, третий выход - со входом аппаратуры управления, а второй вход соединен до старта с третьим выходом блока синхронизации и кодирования командного пункта.

Изобретение поясняется чертежом, где представлена блок-схема предлагаемой СН, содержащая 1 - командный пункт, 2 - аппаратура навигации, 3 - вычислитель, 4 - видеомонитор, 5 - РЛС обнаружения целей, 6 - пульт управления оператора, 7 - блок синхронизации и кодирования, 8 - приводы наведения платформы, 9 - автомат сопровождения целей, 10 - подъемно-поворотная платформа, 11 - РЛС сопровождения целей и ракет, 12 - каналы пеленгации целей, 13 - каналы пеленгации ракет, 14 - каналы передачи команд управления ракетами, 15 - блок управления лучами, 16 - фазированная антенная решетка (ФАР), 17 - оптоэлектронная система, 18 - многоканальный оптический пеленгатор ракет, 19 - теплотелевизионный прицел, 20 - ракета, 21 - радиоответчик, 22 - радиоприемник, 23 - дешифратор команд управления, 24 - лазерный ответчик, 25 - аппаратура управления, 26 - рулевой привод.

В заявленной СН реализовано объединение радиолокационной и оптоэлектронной командных систем наведения, работающих одновременно или в раздельных режимах, что обеспечивает поражение воздушных целей с низкой радарной сигнатурой отражения путем переключения радиолокационной на оптоэлектронную систему наведения до или после пуска ЗУР на дальностях оптической видимости целей.

Работа СН в радиолокационном режиме осуществляется следующим образом.

Поиск и обнаружение воздушных целей осуществляется РЛС обнаружения целей 5. Измеренные РЛС координаты целей (дальность, азимут и угол места) поступают в вычислитель 3, где вырабатываются и выводятся на видеомонитор 4 данные о целях и порядок обстрела. В вычислитель также поступает информация о координатах неподвижного или движущегося КП с аппаратуры навигации 2.

При подлете целей к определенному рубежу с вычислителя подаются команды на приводы наведения 8 подъемно-поворотной платформы 10, что обеспечивает разворот РЛС сопровождения 11 по азимуту и углу места в направлении приоритетных целей. Одновременно в вычислителе на основании данных целеуказания с РЛС обнаружения и аппаратуры навигации 2 осуществляется привязка каждой цели к системе координат КП, распределение ракет залпа по целям и вырабатываются команды в блок управления лучами 15, на основании которых лучи, сформированные ФАР, направляются на выбранные цели для захвата и автосопровождения каналами пеленгации целей 12.

Управление ракетами осуществляется относительно оси лучей, формируемых ФАР через блок управления лучами. Координаты ракет относительно оси лучей определяются каналами пеленгации ракет 13 по сигналам, поступающим с радиоответчиков 21, и передаются в вычислитель 3. В вычислителе вырабатываются команды управления по азимуту и углу места, пропорциональные линейным отклонениям ракет от оси лучей. Команды управления передаются с блока синхронизации и кодирования 7, в котором осуществляется их кодирование и синхронная передача в каналы передачи команд управления 14.

Распределение ракет в залпе по целям производится блоком синхронизации и кодирования 7, осуществляющем общую синхронизацию каналов пеленгации ракет и каналов передачи команд управления. Команды управления и команды запрета радио- и лазерных ответчиков ракет формируются в блоке 7 в виде кодовой последовательности импульсов, в которой адрес ракеты закодирован в виде временного интервала комбинации импульсов. Для каждой ракеты до пуска по каналу связи с блока 9 (выход 3) в дешифратор команд 23 (вход 2) передается и записывается конкретный адрес ракеты, являющийся электронным ключом к последующей расшифровке передаваемой информации, при этом во время пуска расшифровывается только «своя» информация, а радиоответчик 21 и лазерный ответчик 24 отвечают только на «свой» запрос с РЛС 11 командного пункта. Таким образом осуществляется литерная связь КП с каждой конкретной ракетой.

На видеомонитор 4 для оператора с вычислителя 3 поступают координаты целей, информация о распределении ракет по целям и готовности систем к пуску ракет.

Предлагаемая СН в радиолокационном режиме в пуске ракет работает следующем образом. В момент пуска 1-й ракеты блок синхронизации и кодирования 7 по сигналу вычислителя передает по каналу (выход 3) информацию в дешифратор команд 23 ракеты о записи адреса 1-й ракеты. Одновременно с этим блок управления лучами 15 формирует луч ФАР, направленный в поле встреливания ракеты. На основании данных целеуказания с каналов пеленгации целей 12 вычислитель 3 формирует команды управления лучом таким образом, чтобы при пуске ракеты формировался широкий луч, обеспечивающий захват ракеты и ввод ее в узкий луч. После ввода ракеты в узкий луч положение его в пространстве формируется по азимуту и углу места, совпадающим с положением в пространстве выбранной цели.

Канал передачи команд управления 14 через ФАР посылает сигнал запроса радиоответчика, а на ракете радиоприемник 22 обеспечивает прием закодированной информации, передает ее в дешифратор 23, литерная команда с которого запускает радиоответчик 21. Сигналы радиоответчика через ФАР поступают в каналы пеленгации ракет 13, где вырабатываются координаты ракеты, которые поступают в вычислитель, где определяются линейные отклонения ракеты от оси луча, направленного на выбранную цель, и вырабатываются команды управления. Команды управления поступают в блок синхронизации и кодирования 14 и через ФАР излучаются в направлении ракеты.

Принятые радиоприемником 22 команды декодируются в дешифраторе 23 и поступают в аппаратуру управления 25 для управления аэродинамическим рулевым приводом 26, в результате чего ракета движется по оси луча.

Аналогичным образом производится наведение других ракет в радиолокационном режиме работы СН. Электромагнитная совместимость СН обеспечивается за счет временного разделения обращений к каждой ракете.

В случае нападения воздушных целей с низкой радиолокационной сигнатурой отражения или применения противником радиолокационных помех в предлагаемой СН используется оптоэлектронный режим пеленгации целей и наведения ракет в залпе в условиях оптической видимости. Этот режим обеспечивает высокую информативность о целях, высокую точность наведения ракет, скрытность поиска целей и малое время реакции. В этом режиме СН работает следующим образом.

Оператор с пульта 6 подает команды на приводы 8 подъемно-поворотной платформы 10 и осуществляет наведение линии визирования прицела 19 по азимуту и углу места. На видеомониторе 4 воспроизводится обозреваемое прицелом пространство и условия стрельбы. Обнаружив и распознав цели на экране монитора, оператор переводит слежение за целями в автоматический режим с помощью многоканального автомата сопровождения целей 9, который управляет приводами 8 на основе отработки сигналов с прицела.

Одновременно информация о целях с прицела 19 поступает в вычислитель 3, в котором осуществляется определение координат целей (дальность, азимут и угол места), дается электронный адрес каждой цели и порядок их обстрела. Сигналы с вычислителя об электронном адресе ракет поступают в блок синхронизации и кодирования 7, который осуществляет синхронную передачу команд управления ракетами согласно адресу и кодирует работу лазерного ответчика 24 и каналов пеленгации ракет 18. Для каждой ракеты до пуска по каналу связи с блока 7 (выход 3) в дешифратор ракеты 23 (вход 2) и в пеленгатор ракет 18 передается и записывается конкретный адрес ракеты, что является электронным ключом для расшифровки команд управления с блока 14 и восприятия пеленгатором 18 излучения ответчика 24 конкретной ракеты.

Оператор после получения на экране монитора информации о приоритетных целях, порядке их обстрела производит пуск ракет.

После встреливания ракет в поле зрения многоканальный пеленгатор 18 выделяет координаты каждой ракеты (азимут, угол места) относительно оптической оси и передает их в вычислитель 3. Вычислитель на основании координат целей и ракет формирует команды управления каждой ракетой, пропорциональные отклонению ракеты от цели одинакового электронного адреса, и передает их в блок синхронизации и кодирования 7. С блока 7 закодированные команды управления и команды на литерное излучение ответчика 24 передаются в каналы передачи команд управления 14 и через ФАР излучаются в направление ракет.

Принятые радиоприемником 22 ракеты команды декодируются в дешифраторе 23, а затем поступают в аппаратуру управления 25, рулевой привод 26 и в лазерный ответчик для выработки сигнала излучения необходимого кода.

В предлагаемой СН, в случае пропадания информации в вычислителе 3 о координатах целей и ракет, предусмотрен автоматический переход работы СН с радиолокационного режима на оптоэлектронный и наоборот, что повышает эффективность СН.

В предлагаемой СН в качестве РЛС сопровождения на основе ФАР может быть использована РЛС типа «Небо» (журнал «Военный парад», №2, 2002 г., стр.21), а в качестве оптоэлектронной системы может быть использована система GPTTS (Jane's Electro-Optic Systems, 2004-2005, pp.81, 158).

Заявленное устройство по сравнению с известными обладает следующими преимуществами:

- обеспечивает эффективное поражение в ближней тактической зоне нескольких воздушных слабоконтрастных в радиолокационном отношении целей в условиях организованных противником радиопомех;

- обладает высокой информативностью о нападающих целях, скрытностью поиска целей и малым временем реакции в оптоэлектронном режиме работы;

- объединение в предлагаемой СН радиолокационного и оптоэлектронного режимов работы повышает вероятность поражения воздушных целей ЗРК.

Система наведения зенитных управляемых ракет ближнего действия, содержащая на командном пункте радиолокационную станцию обнаружения целей, вычислитель, аппаратуру навигации, видеомонитор, пульт управления, подъемно-поворотную платформу с приводами ее наведения и установленной на ней радиолокационной станцией сопровождения с фазированной антенной решеткой, каналами передачи команд управления и каналами пеленгации целей и пеленгации ракет, причем выход радиолокационной станции обнаружения целей соединен с первым входом вычислителя, первый выход которого соединен с первым входом приводов наведения подъемно-поворотной платформы, выходы каналов пеленгации целей и пеленгации ракет соединены соответственно с третьим и четвертым входами вычислителя, выход аппаратуры навигации соединен со вторым входом вычислителя, второй выход которого соединен с первым входом видеомонитора, выход пульта управления соединен со вторым входом приводов наведения, и содержащая на ракете радиоприемник, радиоответчик, аппаратуру управления, выход которой соединен со входом рулевого привода, отличающаяся тем, что она снабжена на командном пункте блоком управления лучами, установленной на подъемно-поворотной платформе оптоэлектронной системой, включающей пеленгатор ракет и теплотелевизионный прицел, автоматом сопровождения целей и блоком синхронизации и кодирования, при этом выход пеленгатора ракет соединен с пятым входом вычислителя, а вход - с первым выходом блока синхронизации и кодирования, второй выход которого соединен со входом каналов передачи команд управления, а вход - с третьим выходом вычислителя, четвертый выход которого соединен со входом блока управления лучами, выход которого соединен со вторым входом фазированной антенной решетки, а выход теплотелевизионного прицела соединен со вторым входом видеомонитора и входом автомата сопровождения целей, выход которого соединен с третьим входом приводов наведения, а каждая ракета снабжена лазерным ответчиком и дешифратором команд управления, первый вход которого соединен с выходом радиоприемника, первый выход - со входом радиоответчика, второй выход - со входом лазерного ответчика, третий выход - со входом аппаратуры управления, а второй вход соединен до старта с третьим выходом блока синхронизации и кодирования командного пункта.



 

Похожие патенты:

Изобретение относится к области высокоточных управляемых ракет, действующих по наземным, надводным и воздушным целям. .

Изобретение относится к области военной техники. .

Изобретение относится к военной технике, а именно к системам управляемого оружия и ракетной технике с головками самонаведения (ГСН), и может быть использовано в артиллерийских управляемых снарядах с ГСН.

Изобретение относится к области систем наведения (СН) ракет и может быть использовано в комплексах ПТУР и ЗУР. .

Изобретение относится к области автоматики, связанной с проектированием силовых систем управления, и может быть использовано для рулевых приводов управляемых летательных аппаратов, работающих на газообразном рабочем теле.

Изобретение относится к военной технике, а именно, к электрическим системам, размещенным на ракетах или снарядах. .

Изобретение относится к области вооружения, а именно к ракетной технике, и может быть использовано при разработке ракетных комплексов, например с носителями на земле, в которых применяются лучевые системы теленаведения.

Изобретение относится к военной технике и предназначено для наведения ракеты на воздушную цель и информационного обеспечения функционирования боевого снаряжения ракеты.

Изобретение относится к средствам противовоздушной обороны, в частности к зенитным комплексам ближнего рубежа. .

Изобретение относится к системам обеспечения безопасности полетов гражданских воздушных судов. .

Изобретение относится к военной технике и может быть использовано в системах защиты объектов от высокоточного оружия с лазерно-лучевыми системами наведения ракет.

Изобретение относится к средствам воздушного заграждения. .

Изобретение относится к средствам ПВО. .

Изобретение относится к средствам противовоздушной обороны, преимущественно от крылатых ракет с системами самонаведения по рельефу местности. .

Изобретение относится к военной технике. .

Изобретение относится к боеприпасам, содержащим множество отстреливаемых по заданной схеме субснарядов и к способам стрельбы такими боеприпасами. .

Изобретение относится к области вооружения и военной техники, в частности к области защиты наземных объектов от средств воздушного нападения. .

Изобретение относится к оптико-механическим средствам имитации образа источника излучения, преимущественно в инфракрасной области. .

Изобретение относится к средствам противовоздушной обороны, в частности к зенитным комплексам ближнего рубежа. .
Наверх