Гидравлический способ синхронизации движения поршней свободнопоршневого двигателя внутреннего сгорания

Изобретение относится к машиностроению. Гидравлический способ синхронизации движения поршней свободнопоршневого двигателя внутреннего сгорания с оппозитным движением поршней, входящего в состав энергомодуля, преобразующего энергию моторного топлива в электроэнергию, каждый поршень которого гидравлически связан с электрогенератором трубопроводом с клапаном синхронизации движения поршней, в соответствии с изобретением синхронизация движения поршней двигателя осуществляется увеличением или уменьшением сопротивления движению жидкости в соединяющих поршни двигателя с электрогенератором трубопроводах, для чего система управления отслеживает скорости каждого поршня и по сигналу рассогласования скоростей поршней клапаном синхронизации поршней увеличивает или уменьшает сопротивление движению жидкости в трубопроводе того поршня, скорость которого корректируется. Изобретение обеспечивает синхронное движение поршней свободнопоршневого двигателя на всем протяжении рабочего цикла. 1 ил.

 

Изобретение относится к области энергомашиностроения.

Ближайший прототип изобретения - "Осцилляторный пьезотранс-форматор двигателя внутреннего сгорания", патент RU 2169278 CI, 2001. Энергомодуль преобразует химическую энергию моторного топлива в электроэнергию. Особенность энергомодуля, принцип действия которого иллюстрируется в гидравлическом способе синхронизации движения поршней, состоит в том, что в отличие от своего прототипа вместо двух осцилляторных пьезотрансформаторов применяется один электромагнитный насос-генератор 1 (электрогенератор) /см. чертеж/ с якорем 2 и клапанами управления потоком жидкости 3. Кроме электромагнитного насос-генератора /далее - насос-генератор/ в состав энергомодуля входят два свободнопоршневых двигателя внутреннего сгорания с оппозитным движением поршней 4 /далее - правый и левый двигатели/ и система управления автоматикой энергомодуля /далее - система управления, не показана/.

Перед пуском энергомодуля якорь насос-генератора находится в крайнем правом положении, левый клапан управления потоком жидкости - в верхнем положении, а правый - в нижнем, поршни 5 правого двигателя - в точках максимального схождения, поршни левого - в точках максимального расхождения, клапаны впуска воздуха 6 правого двигателя и выпуска отработавших газов 7 закрыты, а клапаны компрессора 8 - открыты. Все одноименные детали левого двигателя занимают противоположные положения.

При пуске энергомодуля система управления форсункой 9 подает топливо в камеру сгорания того цилиндра, поршни которого максимально сближены. Одним из способов топливо воспламеняется, сгорает, и расширяющиеся продукты сгорания начинают разводить поршни двигателя. Соединенные с поршнями двигателя поршни компрессора 10 сжимают воздух в полостях компрессора, а плунжеры 11 продавливают жидкость через насос-генератор. От насос-генератора жидкость поступает в полости плунжеров левого двигателя, и его поршни начинают встречное движение. Через открывшиеся клапаны компрессора из атмосферы в полости компрессора поступает воздух, клапаны впуска воздуха и клапан выпуска отработавших газов закрывается и воздух в цилиндре сжимается. При продавливании жидкости через насос-генератор его якорь начинает движение справа налево. Статорные магниты 12 и 13 представляют собой постоянные магниты, полюса которых расположены так, что торцы якоря перемещаются в зазорах между их разноименными полюсами. При этом в теле якоря возникает переменный магнитный поток, в результате чего в катушке якоря 14 генерируется электрический импульс. По достижению якорем крайнего левого положения система управления переводит клапаны управления потоком жидкости в противоположные положения, и жидкость из полости плунжера правого двигателя начинает поступать в полость левого торца якоря. Якорь движется слева направо, и в катушке якоря генерируется электрический импульс противоположного знака. Система управления продолжает сообщать якорю колебательные движения до тех пор, пока плунжеры и поршни двигателя достигнут точек максимального расхождения, а поршни левого двигателя - точек максимального схождения. В этот момент система управления подает топливо в камеру сгорания левого двигателя и воспламеняет его. Так рабочий цикл одного двигателя инициирует рабочий цикл смежного двигателя.

Пуск энергомодуля может осуществляться также и подачей переменного напряжения на катушку якоря. Якорь совершает колебательные движения, а система управления клапанами управления потоком жидкости организует поток так, что поршни одного из двигателей начнут схождение, после завершения которого начинается рабочий цикл. Насос-генератор при этом действует в режиме насоса.

Одно из условий функционирования свободнопоршневого двигателя внутреннего сгорания с оппозитным движением поршней - синхронное движение поршней в противофазе на всем протяжении рабочего цикла. Изготовить абсолютно идентичные по форме и массе поршни, и цилиндр точной геометрической формы, невозможно. Также невозможно обеспечить равенство сил трения между поршнями и цилиндром на всем протяжении пути поршней. Кроме того, если энергомодуль эксплуатируется на транспортном средстве, на закон движения поршней оказывают влияние силы инерции, возникающие в результате непрогнозируемых перемещений в пространстве. В итоге скорости поршней в каждый момент времени будут отличаться друг от друга.

Традиционно синхронизация движения поршней свободнопоршневого двигателя с оппозитным движением поршней осуществляется рычажным или реечно-шестеренным механизмами /Шелест П.А. Безвальные генераторы газов, М.: Машгиз, 1960, с.302-305/. Эти механизмы связывают поршни двигателя таким образом, что когда один из них движется в одном направлении, другой движется в противоположном. Основной недостаток механического способа синхронизации - наличие самих механизмов, масса которых увеличивает массу энергомодуля и, следовательно, снижает его удельную мощность.

Технической задачей изобретения является обеспечение синхронного движения поршней свободнопоршневого двигателя на всем протяжении рабочего цикла.

Поставленная задача решается за счет того, что гидравлический способ синхронизации движения поршней свободнопоршневого двигателя внутреннего сгорания с оппозитным движением поршней, входящего в состав энергомодуля, преобразующего энергию моторного топлива в электроэнергию, каждый поршень которого гидравлически связан с электрогенератором трубопроводом с клапаном синхронизации движения поршней, при этом синхронизация движения поршней двигателя осуществляется увеличением или уменьшением сопротивления движению жидкости в соединяющих поршни двигателя с электрогенератором трубопроводах, для чего система управления отслеживает скорости каждого поршня и по сигналу рассогласования скоростей поршней клапаном синхронизации поршней увеличивает или уменьшает сопротивление движению жидкости в трубопроводе того поршня, скорость которого корректируется.

Гидравлический способ синхронизации движения поршней осуществляется системой управления с помощью клапанов синхронизации 15. Система управления отслеживает текущую скорость каждого поршня и по сигналу рассогласования скоростей подает команду на соответствующий клапан синхронизации. Так, если скорость верхнего поршня правого двигателя окажется меньше скорости нижнего, срабатывает клапан синхронизации в трубопроводе, соединяющем полость плунжера нижнего поршня с насос-генератором. Клапан частично перекрывает трубопровод, сопротивление движению жидкости увеличивается, и скорость поршня уменьшается. Так как поршни смежных двигателей попарно гидравлически связаны, одновременно уменьшается скорость противоположно движущегося нижнего поршня левого двигателя.

Синхронизация движения поршней может осуществляться и уменьшением сопротивления движению жидкости в трубопроводах, связывающих насос-генератор с поршнями. Для этого параллельно основным трубопроводам устанавливаются дополнительные с нормально закрытыми клапанами /не показаны/. При появлении сигнала рассогласования система управления открывает соответствующий клапан, суммарное для двух трубопроводов сопротивление жидкости уменьшается, и скорость отстающего поршня увеличивается.

Гидравлический способ синхронизации движения поршней свободнопоршневого двигателя внутреннего сгорания с оппозитным движением поршней, входящего в состав энергомодуля, преобразующего энергию моторного топлива в электроэнергию, каждый поршень которого гидравлически связан с электрогенератором трубопроводом с клапаном синхронизации движения поршней, отличающийся тем, что синхронизация движения поршней двигателя осуществляется увеличением или уменьшением сопротивления движению жидкости в соединяющих поршни двигателя с электрогенератором трубопроводах, для чего система управления отслеживает скорости каждого поршня и по сигналу рассогласования скоростей поршней клапаном синхронизации поршней увеличивает или уменьшает сопротивление движению жидкости в трубопроводе того поршня, скорость которого корректируется.



 

Похожие патенты:

Изобретение относится к свободнопоршневым двигателям внутреннего сгорания и может быть использовано в автомобилестроении, судостроении, машиностроении и других областях.

Изобретение относится к двигателестроению, в частности автомобильным двигателям, но может быть использовано и в других силовых установках. .

Изобретение относится к двигателям транспортных средств и может быть использовано преимущественно для морских кораблей и железнодорожных локомотивов. .

Изобретение относится к двигателестроению, а именно к свободнопоршневым двигателям, и может быть использовано в качестве двигателя для привода тихоходных поршневых насосов без промежуточных преобразований движения, а также для привода любых потребителей от вращающегося приводного вала с использованием в качестве источника энергии энергии как высоко-, так и низкопотенциальных газовых сред.

Изобретение относится к свободнопоршневым двигателям внутреннего сгорания и может быть использовано в автомобилестроении, судостроении, машиностроении и других областях.

Изобретение относится к генераторам и может использоваться в транспорте как двигатель внутреннего сгорания или в малой энергетике как источник тока, а также в любых отраслях деятельности человека для получения энергии.

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания. .

Изобретение относится к двигателестроению и может быть использовано в качестве электро-гидрогенератора и теплогенератора. .

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения источников электроэнергии, представляющих собой независимую магнитоэлектрическую станцию переменного тока для движимых и недвижимых объектов, которая может быть использована в качестве резервного источника электроэнергии.

Изобретение относится к устройству, включающему в себя двигатель внутреннего сгорания с поршнем, который имеет возможность свободного механического перемещения в корпусе.

Изобретение относится к области двигателестроения и преобразователей тепловой энергии в электрическую. .

Изобретение относится к теплотехнике, а именно к гидродвигателям внутреннего сгорания, и предназначено для использования в энергетике и транспортном машиностроении
Наверх