Измерительная головка

Изобретение относится к измерительной технике и может быть использовано для координатных измерений на многооперационных станках. Цель изобретения - повышение надежности измерения, а именно исключение искажения формы сигнала. Измерительная головка содержит корпус, установленный в нем пневматический клапан, разделяющий внутреннюю полость корпуса на две камеры - надклапанную и подклапанную, соединенный с клапаном двуплечий рычаг с опорой и преобразователь перемещений, опора выполнена в виде аэростатического подшипника с пневмоупором в виде пневмоцилиндра, взаимодействующего с дроссельно-эжекторным измерительным соплом, состоящим из питающего, напорного и выходного каналов, при этом питающий канал соединен с эжектором и надклапанной камерой, выходной канал соединен с пневмодросселем, а подклапанная камера - с атмосферой. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для координатных измерений на многооперационных станках типа обрабатывающий центр.

Измерительные головки, применяемые на многооперационных станках для координатных измерений, широко известны, например [1]. Измерительная головка содержит корпус, двуплечий рычаг с опорой на корпус, выполненный в виде сферического аэростатического подшипника, щупом на одном конце и преобразователем перемещения на другом и расположенные симметрично относительно рычага аэростатические направляющие. Однако данная измерительная головка позволяет осуществлять измерения лишь по одной из координат, а это существенный недостаток при координатных измерениях на многооперационных станках.

Наиболее близкой по технической сущности к заявляемой измерительной головке является выбранная в качестве прототипа измерительная головка [2], содержащая корпус, установленный в нем пневматический клапан, разделяющий внутреннюю полость корпуса на две камеры, и соединенный с клапаном двуплечий рычаг с опорой, надклапанную камеру, предназначенную для соединения с источником сжатого воздуха, и преобразователь перемещений.

К недостаткам данной измерительной головки можно отнести следующие. Во-первых, установка измерительного рычага на жесткой упругой мембране, соединенной с корпусом, вызывает непостоянство усилия при измерении в различных направлениях в плоскости, перпендикулярной оси. Жесткое защемление мембраны в процессе измерения может привести к ее деформации или поломке. Во-вторых, настройка установленного фильтра на строго определенную частоту, соответствующую состоянию готовности или срабатывания измерительной головки, связано с определенными затратами, а так как приемник должен воспринимать два сигнала, первый - о готовности, второй - о касании, то конструкция фильтра усложняется, а вероятность выработки постороннего сигнала частот готовности или касания существует, что может привести к ложным срабатываниям и поломке измерительной головки. В-третьих, использование сжатого воздуха, подводимого к многооперационным станкам для обдува инструментального конуса, может привести к загрязнению рабочих полостей пневмоакустического генератора и изменению вырабатываемых частот, так как в данном случае к сжатому воздуху предъявляются низкие требования по чистоте и влажности. Для подготовки воздуха требуемого качества необходимы дополнительные устройства, что влечет за собой дополнительные затраты.

Техническая задача - исключение искажения формы сигнала.

Технический результат достигается тем, что в измерительной головке, содержащей корпус, установленный в нем пневматический клапан, разделяющий внутреннюю полость корпуса на две камеры - надклапанную и подклапанную, соединенный с клапаном двуплечий рычаг с опорой и преобразователь перемещений, согласно изобретению опора выполнена в виде аэростатического подшипника с пневмоупором в виде пневмоцилиндра, взаимодействующего с дроссельно-эжекторным измерительным соплом, состоящим из питающего, напорного и выходного каналов, при этом питающий канал соединен с эжектором и надклапанной камерой, выходной канал соединен с пневмодросселем, а подклапанная камера - с атмосферой.

Сущность изобретения поясняется чертежом, на котором представлено поперечное сечение измерительной головки.

Измерительная головка содержит корпус 1, двуплечий рычаг 2, установленный на аэростатической опоре 3 в корпусе 1, измерительный наконечник 4. Пневматический клапан 5, расположенный в корпусе 1, разделяет внутреннюю полость корпуса 1 на надклапанную 6 и подклапанную 7 камеры. Кроме того, головка содержит пневмоупор 8, выполненный в виде пневмоцилиндра, и дроссельно-эжекторное измерительное сопло, состоящее из питающего 9, напорного 10 и выходного 11 каналов, пневмодроссель 12, соединенный с выходным каналом 11, канал 13, соединяющий пневмоупор 8 с надклапанной камерой 6, выходной дроссель 14.

Измерительная головка работает следующим образом.

В начале цикла измерения измерительная головка, находящаяся в инструментальном магазине многооперационного станка в определенном для средств измерения гнезде, по специальной команде устанавливается в шпиндель и осуществляется ее зажим. Подача сжатого воздуха через шпиндель для обдува конуса инструментальной оправки в момент зажима прекращается. Затем по специальной макропрограмме, занесенной в систему ЧПУ многооперационного станка, воздух вновь подается через внутреннюю полость шпинделя к измерительной головке. Сжатый воздух поступает через питающий 9 и напорный 10 каналы к пневмоупору 8, через выходной канал 11 к пневмодросселю 12, а через канал 13 в надклапанную камеру 6 к пневматическому клапану 5 и аэростатической опоре 3. В положении, показанном на чертеже, двуплечий рычаг 2, перекрывая все три пневматических клапана 5, препятствует движению сжатого воздуха в подклапанную камеру 7. Сжатый воздух, испытывая сопротивление истечению в выходном дросселе 14, свободно истекает через сопло пневмодросселя 12, создавая на его выходе избыточное давление, которое несколько ниже давления питания. Наличие данного давления свидетельствует о том, что измерительная головка готова к работе, касание поверхности не произошло. Давление, появившееся на выходе пневмодросселя 12, может быть преобразовано в сигнал любого вида (электрический, гидравлический, пневматический) в зависимости от системы управления многооперационного станка. Уровень создаваемого шума измерительной головки значительно ниже уровня шума многооперационного станка. Измерительная головка по специальной измерительной макропрограмме, занесенной в систему ЧПУ многооперационного станка, доставляется механизмами станка к измеряемой детали. В момент касания наконечника 4 контролируемой поверхности по одному из направлений ±Х; ±Y; ±Z происходит смещение двуплечего рычага 2 относительно корпуса 1, приводящее к размыканию одного из трех пневматических клапанов 5. Сжатый воздух беспрепятственно поступает из надклапанной 6 в подклапанную 7 камеру и, испытывая сопротивление истечению в выходном дросселе 14, истекает в атмосферу. В выходном канале 11 дроссельно-эжекторного измерительного сопла создается отрицательное давление (ниже атмосферного), которое, поступая в пневмодроссель 12 и далее в систему ЧПУ многооперационного станка, является сигналом о касании измерительным наконечником 4 контролируемой поверхности. Механизмы многооперационного станка останавливаются и по датчикам обратной связи осуществляется отсчет перемещений и сравнение их с заданным по специальной макропрограмме, занесенной в систему ЧПУ многооперационного станка.

Параметры аэростатической опоры 3, пневматического клапана 5, пневмоупора 8 и выходного дросселя 14 выбираются из оптимальных условий надежной работы измерительной головки.

Использование предлагаемой измерительной головки, предназначенной для координатных измерений на многооперационном станке, по сравнению с прототипом позволит за счет аэростатической опоры, пневмоупора и пневмоклапанов, соединенных с дроссельно-эжекторным измерительным соплом, повысить надежность измерения.

Таким образом, исходя из вышеизложенного можно сделать вывод, что заявляемая измерительная головка легко реализуется на практике и соответствует критерию "промышленная применимость".

Измерительная головка, содержащая корпус, установленный в нем пневматический клапан, разделяющий внутреннюю полость корпуса на две камеры - надклапанную и подклапанную, соединенный с клапаном двуплечий рычаг с опорой и преобразователь перемещений, отличающаяся тем, что опора выполнена в виде аэростатического подшипника с пневмоупором в виде пневмоцилиндра, взаимодействующего с дроссельно-эжекторным измерительным соплом, состоящим из питающего, напорного и выходного каналов, при этом питающий канал соединен с эжектором и надклапанной камерой, выходной канал соединен с пневмодросселем, а подклапанная камера с атмосферой.



 

Похожие патенты:

Изобретение относится к измерительной технике на основе виброконтактного преобразователя размеров. .

Изобретение относится к области линейных измерений и может быть использовано для измерения высоты жидких тел, имеющих ионную проводимость, в частности, в птицеводстве при оценке инкубационных качеств куриных яиц.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных размеров и контроля деталей по геометрическим параметрам. .

Изобретение относится к измерительной технике и может быть использовано при построении электрических средств измерения параметров двухпроводных линий передачи данных.

Кутиметр // 2231972
Изобретение относится к области измерительной техники и может использоваться для диагностики заболеваний животных, в частности туберкулеза, путем определения изменения толщины кожной складки после введения тестирующих лекарств, кроме того, может применяться для измерения толщины шкур, войлока, фетра, других материалов.

Изобретение относится к области измерительной техники, в частности к устройствам для неразрушающего контроля электропроводящих и ферроромагнитных материалов. .

Изобретение относится к измерительной технике и может быть использовано для определения длины погруженной в среду электропроводящей сваи опорных конструкций наземных и морских сооружений.

Изобретение относится к измерительной технике и может быть использовано в машиностроении для автоматического контроля или измерения линейных размеров изделий при их изготовлении и обработке.

Изобретение относится к измерительной технике и может быть использовано при построении электрических средств измерения параметров двухпроводных линий передачи данных.

Изобретение относится к геофизике и может быть использовано при дефектоскопии металлических труб, например, расположенных в скважине, в частности стальных бурильных, обсадных и насосно-компрессорных труб, а также одновременного вычисления толщины стенок каждой из труб в многоколонных скважинах

Изобретение относится к измерению длины материалов сетчатой, например полотняной, структуры и может быть использовано в текстильном и швейном производствах

Изобретение относится к измерительной технике и предназначено для контроля высоты деталей

Изобретение относится к транспортным средствам в области автоматизации, например к технике подачи или к подъемникам

Изобретение относится к области измерения линейных размеров устройствами, в которых использованы электрические и магнитные средства, и может быть использовано при неразрушающем контроле толщины покрытия из непроводящего материала на токопроводящей подложке

Изобретение относится к контрольно-измерительной технике и может быть использовано, в частности, в гидравлических системах летательных аппаратов, где требуется информация о перемещениях исполнительных гидроцилиндров

Изобретение относится к измерительной технике и предназначено для обнаружения замкнутых микротрещин на токопроводящем покрытии, нанесенном на диэлектрик. Способ контроля целостности токопроводящего покрытия на диэлектрическом материале, включающий операции размещения с зазором плоского электрода, измерения электрической емкости между плоским электродом и поверхностью токопроводящего покрытия, перемещения электрода, операцию сравнения электрических емкостей, при этом плоский электрод устанавливают на подвижном электроприводе, соединенном с регистратором. Плоский электрод возвратно-поступательно перемещают эквидистантно поверхности токопроводящего покрытия, а токопроводящее покрытие перемещают перпендикулярно относительно движения плоского электрода. Полученное значение электрической емкости, поступающее в регистратор, сравнивают с эталонной емкостью, при нарушении равенства электрических емкостей отмечают наличие дефекта на токопроводящем покрытии. Технический результат - расширение эксплуатационных возможностей, обеспечение возможности контролировать токопроводящее покрытие большой площади, сокращение трудоемкости. 2 ил.

Стержень предназначен для определения положения поршня гидроцилиндра. Стержень содержит несколько установленных вдоль оси измерительного стержня и электрически соединенных между собой детекторных элемента, которые реагируют на магнитное поле магнита. Детекторные элементы образованы датчиками Холла. Предусмотрено калибрующее устройство, в котором записаны линеаризации соответствующих детекторных элементов, причем детекторные элементы линеаризованы по отдельности. Технический результат - повышение надежности определения положения поршня гидроцилиндра. 9 з.п. ф-лы, 3 ил.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного цилиндрического изделия, содержащее генератор электромагнитных колебаний, первый детектор и индикатор, введены элемент ввода электромагнитных колебаний, первый и второй элементы вывода электромагнитных колебаний, второй детектор и коррелятор, причем выход генератора электромагнитных колебаний соединен с элементом ввода электромагнитных колебаний, выход первого элемента вывода электромагнитных колебаний подключен к входу первого детектора, выход второго элемента вывода электромагнитных колебаний соединен с входом второго детектора, выход первого детектора подключен к первому входу коррелятора, выход второго детектора соединен с вторым входом коррелятора, выход которого подключен к индикатору. 1 ил.
Наверх