Трехзеркальная оптическая система без экранирования

Изобретение возможно использовать в Фурье-спектрометрии, фотографии, проекционной технике, а также при работе с приемниками излучения, которые требуют увеличенного заднего фокального отрезка, например в составе спутниковой аппаратуры, работающей в условиях воздействия космического излучения высокой мощности. Трехзеркальная система является внеосевой и децентрированной как по апертуре, так и по полевому углу, и содержит зеркала, образованные поверхностями вращения с общей осью. Отражающая поверхность первичного зеркала - сегмент вогнутого гиперболоида с оптической силой, близкой к силе всей системы, вторичное зеркало - выпуклое сферическое, отражающая поверхность третичного зеркала - сегмент вогнутого сплюснутого эллипсоида. Расстояние между первичным и вторичным зеркалами меньше фокусного расстояния первичного зеркала. Центры отражающих поверхностей всех зеркал расположены в вершинах треугольника, плоскость которого включает общую ось этих зеркал, и с разных сторон относительно этой оси. Вершины первичного и третичного зеркал совмещены. Для облегчения конструкции и упрощения юстировки боковые и задние поверхности первичного и третичного зеркал опираются на общие опорные поверхности. Все зеркала могут быть выполнены из материалов с высокой радиационно-оптической устойчивостью к воздействию космического излучения высокой мощности. Обеспечивается создание легкой, простой в производстве и юстировке зеркальной системы без экранирования, с ходом лучей, близким к телецентрическому, с относительным отверстием до 1:3, с угловым полем не менее 2° и задним отрезком S'F' до 0,7f' системы. 3 ил.

 

Изобретение относится к области оптического приборостроения, а именно к классу полностью зеркальных оптических систем без центрального экранирования, и может быть использовано в фотографии, проекционной технике, Фурье-спектрометрах и другой аппаратуре, работающей с различными приемниками излучения, которые требуют увеличенного заднего фокального отрезка, хода лучей, близкого к телецентрическому, высокой коррекции аберраций в спектральном диапазоне, ограниченном лишь свойствами отражающих покрытий зеркал, и высокой радиационно-оптической устойчивости, например, при использовании в составе космической аппаратуры, работающей вблизи радиационных поясов в условиях воздействия космического излучения с высокой мощностью.

Известны зеркальные оптические системы с двумя и тремя отражениями, которые отличаются габаритами и степенью коррекции аберраций.

Объективы с двумя отражениями типа Кассегрена [1. Слюсарев Г.Г. Расчет оптических систем. Л., Машиностроение (Ленингр. отд-е), 1975, с.323] и Ричи-Кретьена [2. Chrétien H. "Rev. D' Optique", 1922, t.1] имеют недостаточно большую светосилу, большое центральное экранирование и обусловленный им увеличенный, по сравнению с объективами без экранирования, размер дифракционного пятна рассеяния, недостаточную степень коррекции полевых аберраций и связанную с ним небольшую (обычно менее 1°) величину углового поля, при этом ход лучей, близкий к телецентрическому, не обеспечивается.

В объективах с тремя отражениями в принципе могут быть хорошо исправлены все аберрации кроме дисторсии. Но экранирование в той или иной степени в большинстве систем [3. Rumsey. US Pat. No 4,101,195 cl.359/859; 4. Korsch Dietrich G. US Pat. No.4,101,195 cl.359/366 и др.] присутствует и, как правило, ход лучей, близкий к телецентрическому, не обеспечивается.

Все рассмотренные объективы выполнены из материалов, не имеющих высокой радиационно-оптической устойчивости, и не могут быть использованы в аппаратуре, работающей в условиях воздействия космического излучения.

Наиболее близким по технической сущности к предлагаемому изобретению является трехзеркальная анастигматическая система [5. Cook Lacy G.; US Pat. No 4,265,510 cl.359/366], содержащая три оптически сопряженных компонента, в которой первый компонент - эллипсоидное зеркало с положительной оптической силой, обращенное вогнутостью к предмету, задающее положение оси системы, второй компонент - гиперболоидное зеркало с отрицательной оптической силой, третий компонент - эллипсоидное зеркало с положительной оптической силой, обращенное вогнутостью к изображению, создающие в совокупности анастигматическую оптическую систему, которая строит изображение и является внеосевой и децентрированной как по апертуре, так и по полевому углу. Система имеет относительное отверстие от 1:2,5 до 1:5 и угловое поле более 3°.

Данная система не обеспечивает ход лучей, близкий к телецентрическому, в силу того, что вторичное и третичное зеркала наклонены и децентрированы относительно оптической оси первичного зеркала, следствием последнего является также то, что система должна иметь сложную, и потому тяжелую, механическую конструкцию, и должна быть сложна в юстировке. Ее зеркала изготавливаются из обычных марок оптических материалов, из-за чего она не обладает достаточной радиационно-оптической устойчивостью.

Целью предлагаемого изобретения является создание легкого, простого в производстве и юстировке зеркального объектива без экранирования, с ходом лучей, близким к телецентрическому, с относительным отверстием до 1:3, с угловым полем не менее 2° и задним отрезком S'F' до 0,7ƒ'системы.

Эта цель достигается тем, что в известной трехзеркальной создающей действительное анастигматическое изображение оптической системе, являющейся внеосевой и децентрированной, как по апертуре, так и по полевому углу, все три зеркала образованы поверхностями вращения с общей осью, причем отражающая поверхность первичного зеркала - сегмент вогнутого гиперболоида с силой, близкой к силе всей системы, вторичное зеркало - выпуклое сферическое, отражающая поверхность третичного зеркала - сегмент вогнутого сплюснутого эллипсоида, расстояние между первичным и вторичным зеркалами меньше фокусного расстояния первичного зеркала, а центры отражающих поверхностей всех зеркал расположены в вершинах треугольника, включающего общую ось этих зеркал, и с разных сторон от этой оси вершины первичного и третичного зеркал совмещены, а боковые и задние поверхности первичного и третичного зеркал опираются на общие опорные поверхности, при этом все зеркала могут быть выполнены из материалов с высокой радиационной устойчивостью к воздействию космического излучения.

На фиг.1 представлена принципиальная оптическая схема трехзеркального объектива без экранирования с ходом лучей, близким к телецентрическому.

Объектив состоит из трех компонентов 1-3. Компонент 1 выполнен в виде внеосевого сегмента вогнутого гиперболоида, обращенного вогнутостью к предмету, компонент 2 - выпуклая сфера, компонент 3 - внеосевой сегмент вогнутого эллипсоида, обращенного вогнутостью к изображению.

На фиг.2 приведены в качестве примера конструктивные параметры системы. Ее фокусное расстояние ƒ'=319,64 мм, относительное отверстие 1:3, угловое поле 2 ω=2,3°, задний фокальный отрезок S'F'=221,82 мм, что составляет 0,7ƒ'.

Компонент 1 имеет оптическую силу ϕ1, примерно равную оптической силе системы ϕ. Компонент 2 имеет оптическую силу ϕ2=-3ϕ. Компонент 3 имеет оптическую силу ϕ3=2ϕ. Расстояние d между компонентом 2 и компонентами 1 и 3 меньше фокусного расстояния компонента 1 и составляет приблизительно 0,6ƒ', а центры C1, С2, С3 отражающих поверхностей всех зеркал лежат в вершинах треугольника, включающего общую ось O21.3 и всех зеркал, и расположены с разных сторон этой оси. Вершины первичного O1 и третичного О3 зеркал совмещены. Боковые 4 и задние 5 поверхности первичного и третичного зеркал опираются на общие опорные поверхности 6.

Зеркала выполнены из радиационно-устойчивых материалов, а именно из кварцевого стекла серии Р.

Рабочая область спектра системы ограничена лишь свойствами покрытий зеркал.

На фиг.3 приведена полихроматическая ЧКХ оптической системы для относительного отверстия 1:3 и углового поля 2 ω=2,3°, рассчитанная для пяти длин волн.

Положительный эффект предлагаемой конструкции трехзеркальной оптической системы заключается в том, что она

- обеспечивает высокое качество изображения при использовании только двух асферических поверхностей (в прототипе три), что упрощает и удешевляет производство и уменьшает технологическую составляющую пятна рассеяния, так как ошибки изготовления в случае сферических поверхностей всегда меньше, чем в случае асферических;

- не имея экранирования и виньетирования, обеспечивает ход лучей, близкий к телецентрическому (в прототипе отсутствует), что позволяет эффективно работать с Фурье-спектрометрами и фотоэлектрическими приемниками излучения;

- за счет того, что боковые и задние поверхности первичного и третичного зеркал опираются на общие опорные поверхности, снижается потребность в количестве степеней свободы юстировочных подвижек до трех линейных (в прототипе пять, так как первичное и третичное зеркала наклонены и децентрированы относительно оптической оси первичного зеркала), а следовательно, уменьшаются сложность, габариты и масса системы, что черезвычайно важно при космическом применении.

Трехзеркальная система без экранирования, содержащая три оптически сопряженных компонента, создающие в совокупности анастигматическую оптическую систему, которая строит изображение и является внеосевой и децентрированной как по апертуре, так и по полевому углу, и в которой первый компонент с положительной оптической силой - зеркало, обращенное вогнутостью к предмету, второй компонент - зеркало с отрицательной оптической силой, третий компонент с положительной оптической силой - зеркало, обращенное вогнутостью к изображению, отличающаяся тем, что все три упомянутые зеркала образованы поверхностями вращения с общей осью, причем отражающая поверхность первичного зеркала - сегмент вогнутого гиперболоида с оптической силой, близкой к силе всей системы, вторичное зеркало - выпуклое сферическое, отражающая поверхность третичного зеркала - сегмент вогнутого сплюснутого эллипсоида, расстояние между первичным и вторичным зеркалами меньше фокусного расстояния первичного зеркала, а центры отражающих поверхностей всех зеркал расположены в вершинах треугольника, плоскость которого включает общую ось этих зеркал, и с разных сторон относительно этой оси, вершины первичного и третичного зеркал совмещены, а боковые и задние поверхности первичного и третичного зеркал опираются на общие опорные поверхности, при этом все зеркала могут быть выполнены из материалов с высокой радиационной устойчивостью к воздействию космического излучения.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и может найти применение как короткофокусный светосильный зеркальный объектив с широким полем зрения и высоким угловым разрешением, обеспечивающим высокое качество изображение по всему полю.

Изобретение относится к области оптического приборостроения и может быть использовано для юстировки составных сферических зеркал телескопов в процессе их сборки и эксплуатации.

Изобретение относится к технике телевизионных видеодисплеев, в которых используется активная матрица жидких кристаллов совместно с проекционной оптикой. .

Изобретение относится к оптическому приборостроению и предназначено для создания объективов, в частности на основе металлооптических элементов, работающих в различных температурных режимах.

Изобретение относится к области оптического приборостроения, а точнее к оптическим системам с отражающими поверхностями. .

Изобретение относится к оптическому приборостроению, в частности к оптическим светолокационным системам для определения координат космических аппаратов. .

Изобретение относится к оптическому приборостроению, и может быть использовано в оптической промышленности, и, в частности, в астрономических телескопах и особенно в оптико-электронных камерах космических телескопов и т.д

Изобретение относится к космическим радиотелескопам и предназначено для управления формой поверхности космического радиотелескопа

Изобретение относится к оптической технике и может быть использовано на транспортных средствах, в частности, автомобилях для отображения путевой, навигационной информации, а также информации о состоянии транспортного средства в поле прямого зрения водителя

Спектрометр состоит из входной щели, расположенной в фокальной плоскости объектива и смещенной в меридиональной плоскости относительно его оптической оси, объектива и диспергирующего устройства. Объектив состоит из первого вогнутого зеркала с положительной оптической силой, обращенного вогнутостью к входной щели, второго выпуклого зеркала с отрицательной оптической силой, расположенного между входной щелью и первым зеркалом и обращенного выпуклостью к первому зеркалу, третьего вогнутого зеркала с положительной оптической силой, расположенного за вторым зеркалом и обращенного вогнутостью к входной щели. Диспергирующее устройство включает диспергирующий элемент и плоское зеркало, расположенное под углом 80…90° к падающим на него лучам. Оптические поверхности по крайней мере двух зеркал являются асферическими. Центры кривизны всех зеркал расположены на оптической оси объектива. Первое и второе зеркала - внеосевые фрагменты зеркал. Третье зеркало расположено на оптической оси. Диспергирующий элемент - призма с преломляющим углом 5…30° из материала с показателем преломления 1,4…1,7 и коэффициентом дисперсии для линии е, равным 20…70. Плоское зеркало выполнено в виде отражающего покрытия на второй по ходу луча грани призмы. Технический результат - повышение технологичности, уменьшение габаритов и массы, упрощение юстировки, повышение качества изображения и исправление кривизны спектральных линий. 3 з.п. ф-лы, 4 ил., 1 табл.

Телескоп включает корпус (1) с размещенной в нем оптической системой, содержащей главное вогнутое гиперболическое зеркало (2) с центральным отверстием (3), вторичное выпуклое гиперболическое зеркало (4) и фотоприемное устройство (5), установленное в фокальной плоскости телескопа. Корпус (1) снабжен полуцилиндрической солнцезащитной блендой (7), установленной на входном зрачке (6) телескопа с возможностью вращения приводом (8) вокруг оптической оси телескопа. На краях внутренней поверхности полуцилиндрической солнцезащитной бленды (7) установлены солнечные фотоэлементы для подачи сигнала на ее привод (8). Длина L полуцилиндрической солнцезащитной бленды (7) удовлетворяет соотношению: L=D/tgα, см; 7°≤α≤70°; где D - диаметр входного зрачка телескопа, см; α - угловое расстояние между направлениями на центр диска Луны и на ближайший к Луне край диска Солнца. Технический результат - обеспечение систематических высокоточных измерений временных вариаций поверхностных яркостей одновременно темной части лунного диска и светлого узкого серпа Луны. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение мощности. Осветительное устройство (1) включает в себя несколько источников (4) света и одну отражательную систему, при этом источники (4) света расположены перед отражательной поверхностью отражательной системы и включают в себя несколько средств освещения, которые расположены вокруг выходного отверстия (10) отражательной системы. Луч света от источников (4) света за счет отражения отклоняется в основном направлении излучения осветительного устройства (1) посредством отражательной системы. Осветительное устройство снабжено первым отражательным участком (2) и выполненным выпуклым вторым отражательным участком (5), первый и второй отражательные участки согласованы друг с другом таким образом, что основной световой луч может создаваться за счет того, что свет от источников (4) света сначала падает на второй отражательный участок (5), а затем на первый отражательный участок (2) и выходит из осветительного устройства в основном направлении излучения. 4 н. и 22 з.п. ф-лы, 13 ил.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого сферического положительного зеркала, обращенного вогнутостью к плоскости предметов, второе зеркало в виде выпуклого сферического отрицательного зеркала, обращенного выпуклостью к первому зеркалу, третье зеркало в виде внеосевого фрагмента вогнутого положительного асферического зеркала, обращенного вогнутостью к четвертому зеркалу, четвертое зеркало в виде фрагмента вогнутого положительного асферического зеркала, обращенного вогнутостью к плоскости изображения, и апертурную диафрагму. Центры кривизны всех оптических поверхностей расположены на одной общей оси. В меридиональном сечении второе зеркало симметрично относительно оптической оси, первое зеркало расположено ниже оптической оси, третье зеркало выше оптической оси, а четвертое зеркало - выше третьего зеркала. Апертурная диафрагма совпадает с оправой второго зеркала. Технический результат - отсутствие центрального экранирования, повышение качества изображения в пределах углового поля 13° в спектральном диапазоне 450-1700 нм и повышение технологичности. 2 ил., 1 табл.

Изобретение относится к оптическому приборостроению и касается зеркального спектрометра. Спектрометр состоит из входной щели, первого зеркала, дифракционной решетки, второго зеркала, фотоприемного устройства. Входная щель смещена относительно оптической оси. Первое и второе зеркала выполнены в виде внеосевых фрагментов вогнутых сферических зеркал, обращенных вогнутостью к входной щели. Дифракционная решетка является выпуклой сферической и расположена осесимметрично на оптической оси. Штрихи дифракционной решетки параллельны длинной стороне входной щели. Фотоприемное устройство смещено с оптической оси и расположено со стороны, противоположной входной щели. Входная щель и фотоприемное устройство наклонены в меридиональном сечении на небольшие углы. Центры кривизны сферических поверхностей лежат на одной общей оси, являющейся оптической осью спектрометра. Технический результат заключается в увеличении относительного отверстия, улучшении качества изображения, уменьшении размеров и массы и упрощении юстировки спектрометра. 4 з.п. ф-лы, 5 ил., 1 табл.

Расфокусированная оптика (110, 210) для смешения светового выхода от многокристального СИД (101, 201). Расфокусированная оптика (110, 210) включает в себя внешний отражатель, имеющий вогнутую внутреннюю поверхность (122, 126, 222, 226) с изменяющимся профилем. Внешний отражатель окружает внутренний отражатель (140, 240), имеющий выпуклую поверхность (142, 242). Выпуклая поверхность (142, 242) внутреннего отражателя (140, 240) расположена так, чтобы в целом быть обращенной к многокристальному СИД (101, 201), и может, необязательно, иметь изменяющийся профиль. Соответствующий выбор конструктивных параметров профилей вогнутой внутренней поверхности (122, 126, 222, 226), профиль(ей) выпуклой поверхности (142, 242) и диапазона углового вращения, в пределах которого находятся упомянутые профили, предоставляет возможность соответствующего смешения светового выхода от данного многокристального СИД (101, 201). Технический результат - обеспечение желаемого смешения света, выходящего из многокристальной сборки. 3 н. и 17 з.п. ф-лы, 4 ил.
Наверх