Коллектор электровакуумного прибора

Изобретение относится к электронной технике. Технический результат изобретения - повышение выходной мощности и коэффициента полезного действия, повышение надежности, долговечности и технологичности. Предложен многосекционный коллектор электровакуумного прибора с рекуперацией, выполненный в виде полого конуса. Полый конус выполнен монолитным из нитрида алюминия методом горячего прессования, металлические замкнутые проводники выполнены посредством сканирования лучом лазера внешней поверхности полого конуса в местах соответствующего их расположения на глубину, равную толщине полого конуса. При этом толщину полого конуса и ширину металлических замкнутых проводников определяют выходные параметры электровакуумного прибора. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к электронной технике, а именно к коллекторам электровакуумных приборов.

Миниатюризация устройств электронной техники, в том числе устройств СВЧ, ставит вопрос о миниатюризации всех элементов, входящих в них, в том числе электровакуумных приборов.

Более того, это актуально в связи с развитием работ по созданию мощных ЛБВ и многолучевых клистронов.

При этом одновременно необходимо обеспечить:

- высокую выходную мощность устройств СВЧ, которая определяется, в том числе, эффективной работой коллектора электровакуумного прибора,

- высокий коэффициент полезного действия (КПД). Следует отметить на сегодня, например, для ЛБВ предельными являются значения КПД от 30 до 50 процентов, полученные в основном в результате оптимизации системы взаимодействия электронов с электромагнитным полем,

- эффективный теплоотвод.

Совершенствование всех узлов электровакуумного прибора и, в том числе, коллекторного является перспективным с этой точки зрения.

Электровакуумные приборы СВЧ О-типа, клистроны, ЛБВ и другие являются наиболее универсальными усилителями и генераторами мощных СВЧ-колебаний. В этих приборах часть кинетической энергии электронного пучка, сформированного электронной пушкой и системой фокусировки в области взаимодействия, преобразуется в энергию СВЧ-поля. Энергия отработанного электронного пучка рассеивается в коллекторе, который представляет собой отдельный узел, изолированный по постоянному току от СВЧ-блока.

Конструктивно он выполнен, как правило, в виде полой металлической формы с сочетанием цилиндрических и конических поверхностей либо просто в виде конуса.

В зависимости от электрического потенциала, подаваемого на коллектор, различают два основных типа коллекторов - конвекционные и коллекторы с рекуперацией.

Недостаток конвекционного коллектора - значительная неравномерность рассеяния мощности электронного пучка по поверхности коллектора и, как следствие, снижение выходной мощности и низкий КПД.

С целью компенсации указанного недостатка устанавливают специальные магнитные экраны, предотвращающие проникновение фокусированного магнитного поля в коллектор, а также дополнительные расфокусирующие магниты, рассеивающие электронный пучок по поверхности коллектора [1].

И то, и другое приводит к увеличению массогабаритных характеристик коллектора, в том числе из-за усложнения системы охлаждения.

Одним из эффективных способов обеспечения равномерного рассеяния мощности электронного пучка по всей поверхности коллектора является рекуперация энергии электронов в коллекторе - процесс возвращения мощности электронов из коллектора в цепь питания. При этом между областью взаимодействия и коллектором создается постоянное тормозящее электрическое поле, что приводит к снижению скорости электронов, оседающих на поверхности коллектора, и, как следствие, снижению мощности, рассеиваемой электронами в виде тепла в коллекторе Ррас кол [2].

Таким образом, рекуперация позволяет путем подачи на коллектор электрического потенциала ниже потенциала системы взаимодействия повысить общий КПД электровакуумного прибора.

Используя многоступенчатую рекуперацию, можно значительно увеличить общий КПД электровакуумного прибора. При этом коллектор представляет собой совокупность отдельных металлических замкнутых проводников определенной ширины, на которые подают разные потенциалы, и, следовательно, они должны быть изолированы друг от друга.

А по определению электровакуумного прибора соединение изоляторов с отдельными металлическими замкнутыми проводниками должно быть вакуумно-плотным.

В случае, когда на последней ступени электрический потенциал равен электрическому потенциалу катода, удалось повысить общий КПД до 55-68 процентов, например, для трехступенчатой рекуперации.

Однако, с другой стороны, это приводит к увеличению массогабаритных характеристик, которые в основном определяются как выходной мощностью, так и системой охлаждения электровакуумного прибора.

Для непрерывного режима работы рассеиваемая мощность на коллекторе ограничена определенной величиной.

В мощных приборах СВЧ О-типа от 50 до 80 процентов подводимой мощности постоянного тока преобразуется в тепло. Для повышения эффективности теплоотвода используются, как правило, системы охлаждения с большим периметром и малым поперечным сечением.

В силу этого мощные приборы О-типа отличаются значительным превышением продольных размеров над поперечным и немалую долю в это вносит конструкция коллектора.

Таким образом, выходная мощность и КПД, эффективный теплоотвод и массогабаритные характеристики, как правило, находятся в неком противоречии.

Техническим результатом предлагаемого изобретения является повышение выходной мощности и коэффициента полезного действия путем повышения эффективности теплоотвода при сохранении массогабаритных характеристик, повышение надежности и долговечности путем повышения вакуумной плотности и механической прочности и повышение технологичности.

Указанный технический результат достигается тем, что в известной конструкции коллектора электровакуумного прибора, представляющего собой полый конус из чередующихся одного и более металлических замкнутых проводников, разделенных изоляторами, металлические замкнутые проводники снабжены внешними металлическими выводами, при этом толщину полого конуса и ширину металлических замкнутых проводников определяют выходные параметры электровакуумного прибора.

При этом

- полый конус выполнен монолитным из нитрида алюминия горячим прессованием,

- металлические замкнутые проводники выполнены посредством сканирования лучом лазера внешней поверхности полого конуса в местах соответствующего их расположения на глубину, равную толщине полого конуса.

С целью предотвращения вытекания алюминия в процессе сканирования внешней поверхности полого конуса он может быть снабжен съемным приспособлением, который герметично расположен по всей его внутренней поверхности, например втулкой, выполненной из стали.

С целью уменьшения глубины проплава, в случае недостаточной мощности лазера, на внешней поверхности полого конуса в местах соответствующего расположения металлических замкнутых проводников могут быть выполнены канавки необходимой глубины.

Неметаллические материалы, такие как оксид бериллия, нитриды бора, алюминия и кремния широко используют в электронной технике благодаря их диэлектрическим и полупроводниковым свойствам.

Наиболее перспективным из указанных материалов является нитрид алюминия.

Во-первых, являясь изолятором, он имеет коэффициент теплопроводности, близкий к коэффициенту теплопроводности алюминия.

Во-вторых, вследствие высокой теплопроводности и малого коэффициента термического расширения нитрид алюминия обладает высокой теплостойкостью.

В-третьих, нитрид алюминия является единственным из указанных выше материалов, в результате переплава которого остается только один металл - алюминий.

В-четвертых, он не токсичен в отличие от оксида бериллия.

Кроме того, нитрид алюминия является дешевым и легко воспроизводимым материалом.

Установлено, что коэффициент теплопроводности нитрида алюминия зависит, в том числе, от содержания в нем кислорода. Коэффициент теплопроводности может изменяться от 320 Вт/(м К) для чистого нитрида алюминия до 50 Вт/(м К) при содержании кислорода в нем в количестве порядка 1021 см-3.

Горячее прессование обеспечивает минимальное наличие кислорода, при этом нитрид алюминия имеет коэффициент теплопроводности, равный 160 Вт/(м К) [3].

Выполнение полого конуса монолитным из нитрида алюминия горячим прессованием, а металлических замкнутых проводников посредством сканирования лучом лазера внешней поверхности полого конуса в местах соответствующего их расположения на глубину, равную толщине полого конуса, в совокупности указанных признаков позволит:

Во-первых, повысить выходную мощность и КПД.

Общий КПД электровакуумных приборов СВЧ определяется отношением полезной мощности на выходе Рвых к подаваемой мощности Р от источников постоянного напряжения.

no=Рвых/Р=Рвых/(Рвых+Ррас+Ррас кол), где

Рвых - выходная мощность СВЧ,

Ррас - рассеиваемая мощность в других узлах электровакуумного прибора,

Ррас кол - рассеиваемая мощность в коллекторе.

Из формулы видно, что в знаменателе учтен баланс мощностей, то есть в замкнутой системе электровакуумного прибора часть подаваемой мощности Р преобразуется в выходную мощность СВЧ Рвых, а другая рассеивается электронами в виде тепла на стенках системы взаимодействия Ррас и в коллекторе Ррас кол.

Если в конвекционных коллекторах в тепло переходит вся мощность отработанного потока Рвх кол и безвозвратно уходит из цепи питания, то в коллекторах с рекуперацией Ррас кол ниже Рвх кол на величину мощности Ррек, рекуперируемой в цепь питания за счет торможения электронов пучка. Возвращение части мощности отработанного электронного потока в источник постоянного напряжения приводит к снижению подаваемой мощности Р на величину Ррек и, следовательно, к увеличению общего КПД - no, который рассчитывают из формулы:

no=nт/(1-nрек(1-ne-а)), где

nт - общий КПД электровакуумного прибора без рекуперации,

а=Ррас/Ро - доля мощности электронов, оседающих на стенках системы взаимодействия,

nрек=Ррек/Рвх кол,

ne=Рвых/Ро - электронный КПД,

Ро - мощность немодулированного электронного потока.

При отсутствии рекуперации

nо=nт,

а при nрек, не равном 0,

nо<nт.

Как видно из приведенного выше, общий КПД и выходная мощность могут быть увеличены на 10-20 процентов.

Как было указано в приборах СВЧ О-типа от 50 до 80% подводимой мощности постоянного тока рассеивается, преобразуясь в тепло, что требует при высокой величине подводимой мощности более эффективного теплоотвода, прежде всего от коллектора. Последнее решается, как правило, посредством увеличения системы охлаждения и, как следствие, приводит к увеличению массогабаритных характеристик.

Материал нитрид алюминия как основа предлагаемой конструкции коллектора, который, как было указано, обладает высокой теплопроводностью, и сочетание в конструкции материалов нитрида алюминия - изоляторы и алюминия - металлические замкнутые проводники, коэффициенты теплопроводности которых близки по значениям порядка 160 Вт/м К и 210 Вт/м К соответственно, обеспечивают это свойство - высокую теплопроводность и конструкции коллектора в целом.

И как следствие этого стало возможным повысить эффективность теплоотвода без увеличения системы охлаждения, а следовательно, без увеличения массогабаритных характеристик.

Что в свою очередь позволит повысить выходную мощность СВЧ и КПД.

Во-вторых,

а) исключить наличие швов между металлическими замкнутыми проводниками и изоляторами и тем самым повысить вакуумную плотность и механическую прочность,

б) снизить напряжения на границе соприкосновения металлических замкнутых проводников и изоляторов благодаря тому, что коэффициенты теплового линейного расширения алюминия - материала металлических замкнутых проводников и нитрида алюминия - материала изоляторов близки по значениям, и тем самым повысить механическую прочность коллектора.

И как следствие того и другого имеет место повышение надежности и долговечности.

В-третьих, исключить традиционные трудоемкие операции по выполнению изоляторов и соединений между ними благодаря возможности использования в процессе их выполнения совокупности

а) свойства нитрида алюминия, как было указано выше, в результате переплава оставлять только один металл - алюминий,

б) высокотехнологичной лазерной технологии.

И тем самым повысить технологичность.

Таким образом, предлагаемый коллектор электровакуумного прибора представляет собой монолитную конструкцию, которая обеспечивает плотное вакуумное соединение чередующихся металлических замкнутых проводников, выполненных из алюминия, разделенных изоляторами из нитрида алюминия.

Изобретение поясняется чертежом, на котором дан разрез предлагаемого трехсекционного коллектора с рекуперацией, где

- полый конус - 1,

- металлические замкнутые проводники - 2,

- изоляторы - 3,

- металлические выводы - 4,

- съемная втулка - 5.

Пример конкретного выполнения

Формирование заготовки

Изготавливают заготовку из нитрида алюминия горячим прессованием, при этом ее форма соответствует форме полого конуса 1 коллектора.

Для чего порошок нитрида алюминия, полученный методом высокотемпературного синтеза, прессовался со связкой на основе смеси каучука и бензина в соотношении 1:1, затем спекался в атмосфере азота при температурах 2100-2200К с выдержкой в течение часа при максимальной температуре.

Как показал рентгенофазовый анализ, связка при такой обработке полностью удаляется, а материал содержит до 99% нитрида алюминия.

Производят полировку поверхности заготовки полого конуса и очистку ее ацетоном или спиртом.

Выполняют металлические замкнутые проводники 2, для чего заготовку полого конуса 1 размещают на столе лазерной установки «Контата» на базе СО2-лазера мощностью 800 Вт с длиной волны генерируемого излучения 10.6 мкм и закрепляют на рабочем участке стола с помощью вольфрамовых пружин, что предотвращает растрескивание образца при нагреве.

В компьютер лазерной установки вводят топологический рисунок чередующихся металлических замкнутых проводников 2.

Включают лазерную установку.

Полый конус 1 коллектора с выполненными на нем металлическими замкнутыми проводниками 2 из алюминия исследовались методом рентгеноструктурного анализа (ДРОН-2) на предмет чистоты выполнения металлических замкнутых проводников из алюминия.

Далее осуществляют контроль по постоянному току на предмет целостности металлических замкнутых проводников.

Выполненная конструкция коллектора отличается высокой вакуумной плотностью, механической прочностью, высокими диэлектрическими свойствами.

Таким образом, предлагаемая конструкция коллектора электровакуумного прибора позволит повысить:

во-первых, выходную мощность и коэффициент полезного действия путем повышения эффективности теплоотвода при сохранении массогабаритных характеристик,

во-вторых, надежность и долговечность путем повышения вакуумной плотности и механической прочности,

в-третьих, технологичность благодаря использованию в процессе выполнения свойства нитрида алюминия в результате переплава оставлять только один металл - алюминий в совокупности с высокотехнологичной лазерной технологией.

Источники информации

1. Алямовский И.В. Электронные приборы и электронные пушки. М.: Сов. радио., 1966 г., стр.152.

2. Сандалов А.Н., Родякин В.Е. Коллекторные системы приборов СВЧ с продольным взаимодействием. Зарубежная радиоэлектроника, 1984 г. Вып.9, стр.63.

3. Мушкаренко Ю.Н. Высокотеплопроводные материалы в электронике СВЧ. Обзоры по электронной технике. Сер.6, Материалы. 1988 г. Вып.4, стр.29.

1. Коллектор электровакуумного прибора, выполненный в виде полого конуса из чередующихся одного и более металлических замкнутых проводников, разделенных изоляторами, металлические замкнутые проводники снабжены внешними металлическими выводами, при этом толщину полого конуса и ширину металлических замкнутых проводников определяют выходные параметры электровакуумного прибора, отличающийся тем, что полый конус выполнен монолитным из нитрида алюминия горячим прессованием, металлические замкнутые проводники выполнены посредством сканирования лучом лазера внешней поверхности полого конуса в местах, соответствующего их расположения на глубину, равную толщине полого конуса.

2. Коллектор электровакуумного прибора по п.1, отличающийся тем, что полый конус может быть снабжен съемным приспособлением, который герметично расположен по всей внутренней его поверхности, например, втулкой, выполненной из стали.

3. Коллектор электровакуумного прибора по п.1, отличающийся тем, что на внешней поверхности полого конуса в местах соответствующего расположения металлических замкнутых проводников могут быть выполнены канавки необходимой глубины.



 

Похожие патенты:

Изобретение относится к электровакуумным приборам СВЧ, в частности к коллекторам в лампах бегущей волны О-типа или клистронах. .

Изобретение относится к электровакуумным приборам СВЧ, в частности к коллекторам в лампах бегущей волны О-типа или клистронах, в которых применяется рекуперация кинетической энергии отработавших электронов.

Изобретение относится к электронной технике и может быть использовано при разработке и изготовлении мощных СВЧ-приборов О-типа, например клистронов. .

Изобретение относится к вакуумной электронной технике и может быть использовано в лучевых электронных СВЧ-приборах, преимущественно в многоступенчатых коллекторах с рекуперацией энергии.

Изобретение относится к электронным СВЧ-приборам. .

Изобретение относится к электронной технике и служит для увеличения долговечности и надежности прибора при сохранении или сокращении его массогабаритных характеристик.

Изобретение относится к вакуумной электронной технике и может быть использовано в электронных СВЧ-приборах с длительным взаимодействием, преимущественно в коллекторах мощных приборов с рекуперацией.

Изобретение относится к способу коллекторного качания, в частности, для управления пучком электронов в коллекторе пучка вакуумного устройства, подобного электронной лампе сверхвысокочастотного генератора

Изобретение относится к электровакуумным приборам, в частности к коллекторам в лампах бегущей волны, многолучевых клистронах и клистродах, в которых используется рекуперация кинетической энергии электронов, выходящих из электродинамической системы прибора. Технический результат заключается в повышении КПД и срока службы прибора. Коллектор содержит корпус, изолятор, устройство для создания поперечного электрического поля и электроды, причем корпус снабжен многоштырьковой ножкой, выполненной в виде керамического диска, а устройство для создания поперечного электрического поля размещено перед электродами и выполнено в виде соосно расположенных кольца и цилиндрического стакана. Электроды образуют двухрядную многосекционную систему, каждая секция которой содержит внешний и внутренний электроды с плоскими торцевыми и цилиндрическими боковыми поверхностями. Коллектор также снабжен дополнительным электродом, который выполнен в виде диска и размещен за электродами последней секции, внешними и внутренними дополнительными изоляторами, выполненными в виде шайб и размещенными по обе стороны каждого внутреннего и внешнего электрода, диэлектрическими трубками и проводниками. Все электроды и изоляторы, а также многоштырьковая ножка расположены сосно, а размеры наружных диаметров внешних электродов, внешних дополнительных изоляторов, кольца и дополнительного электрода одинаковы, причем внешние цилиндрические поверхности дополнительного электрода и кольца соединены с внутренней поверхностью изолятора, а в электродах и дополнительных изоляторах выполнены отверстия, образующие цилиндрические полости, в которых размещены диэлектрические трубки, внутри которых расположены проводники, соединяющие кольцо, цилиндрический стакан и каждый из электродов с соответствующим штырьком многоштырьковой ножки. 1 з.п. ф-лы, 3 ил.

Изобретение относится к многолучевым клистронам мегаваттного уровня мощности. Полые резонаторы многолучевого клистрона работают на высшем виде колебаний E0n0. Многолучевой клистрон содержит кольцевые резонаторы, которые работают на высшем виде колебаний E0n0, и n кольцевых емкостных зазоров, между которыми расположены кольцевые индуктивные области, где n=2, 3. Во всех или некоторых индуктивных областях кольцевых резонаторов содержатся дополнительные кольцевые выступы в областях нулевого электрического поля на рабочем виде колебаний. Входной и выходной резонаторы связаны с внешней нагрузкой с помощью аксиально-асимметричными элементами связи и содержат один или несколько закорачивающих штырей, соединяющих торцевые крышки резонатора. многолучевого клистрона, работающего на виде колебаний E0n0. Технический результат - повышение равномерности распределения электрического поля по сечениям пролетных каналов. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области электронной СВЧ-техники. Электронный СВЧ-прибор большой мощности пролетного типа включает выполненный из материала с низкой электропроводностью вакуумный корпус, магнитную систему формирования и транспортировки электронного пучка, выполненный отдельно от вакуумного корпуса коллектор отработанного электронного пучка в виде тела вращения с медленно изменяющимся вдоль оси симметрии радиусом, внешняя поверхность которого является токовоспринимающей, а также расположенные коаксиально коллектору снаружи вакуумного корпуса коллекторную сканирующую катушку и коллекторную корректирующую катушку. Указанная геометрия СВЧ-прибора при пространственно однородной переменной составляющей магнитного поля коллекторной сканирующей катушки значительно снижает экранирование переменной составляющей магнитного поля в области вблизи коллектора, где проходит отработанный электронный пучок. Технический результат- снижение максимальной рабочей температуры токовоспринимающей поверхности коллектора СВЧ-прибора и повышение долговечности СВЧ-прибора при заданной мощности СВЧ-излучения (и заданной рассеиваемой мощности отработавшего электронного пучка) или повышение максимально возможной рассеиваемой мощности отработавшего электронного пучка и мощности СВЧ-излучения при заданной максимальной рабочей температуре токовоспринимающей поверхности коллектора или долговечности СВЧ-прибора. 1 з.п. ф-лы, 3 ил.
Наверх