Устройство формирования мощных импульсных сигналов на сканирующей фазированной антенной решетке

Изобретение относится к радиотехнике, может быть использовано в радиолокации, в системах связи и других устройствах, в которых используются последовательности радиоимпульсов. Технический результат заключается в формировании из непрерывного сигнала, излучаемого сканирующей ФАР, импульсного сигнала с импульсной мощностью, превышающей мощность непрерывного сигнала. Сущность изобретения состоит в том, что сканирующая ФАР используется в качестве облучателя ФАР проходного типа с оптическим питанием, в которую дополнительно введены линии задержки. При сканировании диаграмма направленности облучателя последовательно облучает приемные элементы ФАР с оптическим питанием, возбуждая в них импульсный сигнал. Линии задержки предназначены для того, чтобы этот импульсный сигнал достигал излучающих элементов ФАР с оптическим питанием одновременно. Излучаемая импульсная мощность сигнала может при этом достигать величины , где Р0 - мощность непрерывного сигнала, подводимая к сканирующей фазированной антенной решетке, - ширина сектора сканирования, - ширина диаграммы направленности сканирующей ФАР. 2 ил.

 

Изобретение относится к радиотехнике, может быть использовано в радиолокации, в системах связи и других устройствах, в которых используются последовательности радиоимпульсов.

Прототипом изобретения является фазированная антенная решетка (ФАР) с оптическим питанием проходного типа [1]. Схема прототипа приведена на фиг.1. Прототип состоит из облучателя (1), который направляет излучаемую мощность на приемную антенную решетку (АР) (2), состоящую из М элементов 2.1, 2.2, ... 2.М. Принятая мощность проходит через фазовращатели (3) и после фазирования излучается в нужном направлении излучающей решеткой (4).

Целью изобретения является формирование из излучаемого непрерывного сигнала импульсного сигнала с импульсной мощностью, превышающей мощность непрерывного сигнала.

Поставленная цель достигается тем, что в известном устройстве в качестве облучателя используется сканирующая ФАР (5 на фиг.2), излучающая непрерывный сигнал, а также введены линии задержки (6), предназначенные для компенсации разницы времени попадания максимума импульсного сигнала, формируемого при сканировании диаграммы направленности облучателя на элементы приемной антенной решетки (2), равной τ3=d/(VскR), где d - расстояние между центрами соседних приемных элементов, Vск - скорость сканирования диаграммы направленности, R - расстояние от центра сканирующей ФАР до приемных элементов (2.1, 2.2...2.М).

Устройство работает следующим образом. Фазированная антенная решетка (5 на фиг.2), излучает непрерывный сигнал и формирует диаграмму направленности (ДН), которая в статическом режиме неподвижна, а во время работы сканирует в пространстве со скоростью Vск [рад/с]. Перед этой решеткой на расстоянии R находится приемная решетка (2), состоящая из приемных элементов (2.1, 2.2...2.М). При сканировании ДН на выходе каждого приемного элемента формируется импульсный сигнал, форма которого повторяет форму ДН, а длительность равна (где ΘДН - ширина диаграммы направленности антенны).

Пусть главный лепесток сканирующей диаграммы в момент времени t0 направлен на центр приемного элемента 2.1. В этот момент на выходе приемного элемента 2.1 наблюдается максимум импульсного сигнала. Через некоторое время задержки главный лепесток вследствие сканирования ДН будет направлен на центр элемента 2.2 (α - угол между центрами приемных элементов), а через время на центр элемента 2.3 и т.д. Через время сканирования где Θск - ширина сектора сканирования, максимум диаграммы направленности будет находиться в центре последнего элемента 2.М приемной решетки.

В результате на выходе каждого из приемных элементов при сканировании ДН решетки АР-1 образуются импульсы, сдвинутые относительно друг друга во времени.

Линии задержки, установленные на выходах приемных элементов решетки (2), компенсируют временной сдвиг и обеспечивают одновременное появление максимума импульсов на выходе всех элементов излучающей решетки (4). Если величину задержки для приемного элемента 2.М считать равной нулю, то для элемента 2.1 эта величина будет равна tск, для элемента 2.2 - tскЗ1, для элемента 2.3 - tскЗ2 и т.д. Таким образом линии задержки накапливают энергию за время tск, а излучение сигнала решеткой 4 происходит за время τи. Фазовращатели служат для формирования ДН решетки АР-3.

Определим отношение импульсной мощности сформированного импульса и мощности непрерывного сигнала, излучаемого антенной решеткой АР-1. За время сканирования решетка ФАР (5) излучает энергию Э=P0tск, где P0 - мощность, подводимая к решетке. В первом приближении можно считать, что практически вся подводимая мощность сосредоточена в главном лепестке ДН. Приемная решетка (2) позволяет собрать энергию, излучаемую ФАР (5) за время сканирования, а линии задержки (6) являются накопителем энергии за это время и дают возможность сконцентрировать ее внутри импульса с длительностью . Следовательно, мощность импульса, излучаемого рассматриваемым устройством, определяется как

Ограничим ширину сектора сканирования величиной ширины диаграммы направленности одного излучающего элемента сканирующей ФАР (5). При плотной упаковке излучающих элементов (когда расстояние между центрами элементов равно размеру одного элемента) получим:

Ри0N,

где N - количество элементов фазированной решетки (5).

Библиографические данные

1. Сазонов Д.М. Антенны и устройства СВЧ: Учеб. для радиотехнич. спец. вузов. - М.: Высш. шк., 1988.

Устройство формирования мощных импульсных сигналов на сканирующей фазированной антенной решетке, содержащее фазированную антенную решетку проходного типа с оптическим питанием, состоящую из облучателя, приемной антенной решетки, фазовращателей и излучающей антенной решетки, отличающееся тем, что, с целью формирования мощных импульсных сигналов, в качестве облучателя применена сканирующая фазированная антенная решетка и дополнительно введены линии задержки, выходы элементов приемной антенной решетки соединены с входами фазовращателей, выходы фазовращателей соединены с входами линий задержки, выходы линий задержки соединены с входами элементов излучающей антенной решетки, а линии задержки предназначены для компенсации разницы времени попадании максимума импульсного сигнала, формируемого при сканировании диаграммы направленности облучателя, на входы соседних элементов приемной решетки, равной τ3=d/(VскR), где d - расстояние между центрами соседних элементов приемной решетки; Vск - скорость сканирования диаграммы направленности; R - расстояние от центра сканирующей фазированной антенной решетки до центров соседних элементов приемной решетки, при этом излучающая антенная решетка излучает сигнал с импульсной мощностью , где Р0 - мощность непрерывного сигнала, подводимая к сканирующей фазированной антенной решетке; Θск - ширина сектора сканирования; ΘДН - ширина диаграммы направленности сканирующей фазированной антенной решетки.



 

Похожие патенты:

Изобретение относится к радиотехнике, а именно к антенной технике, и может использоваться в качестве передающей в KB или УКВ диапазонах в условиях глубокого заложения излучателей в толщу земли.

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов. .

Изобретение относится к технике активных фазированных антенных решеток (АФАР) и может быть использовано при создании радиолокационных стаций (РЛС) мобильных объектов.

Изобретение относится к области конструирования фазированных антенных решеток (ФАР) и может быть использовано в приемо-передающих модулях активных фазированных антенных решеток (АФАР) с контрольными детекторными элементами в твердотельных радиолокационных станциях (РЛС).

Изобретение относится к антенной технике, в частности к приемопередающим антенным элементам, и может быть использовано в проходных фазированных антенных решетках (ФАР) СВЧ-диапазона с электрическим сканированием луча.

Изобретение относится к радиотехнике СВЧ и может быть использовано в РЛС. .

Изобретение относится к радиотехнике СВЧ и может быть использовано в обзорных трассовых радиолокаторах. .

Изобретение относится к антенной технике. .

Антенна // 2316859
Изобретение относится к радиотехнике СВЧ. .

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при приеме электромагнитной волны круговой поляризации поля антенной решеткой (АР) идентично ориентированных векторных излучателей (в частном случае - турникетных) в условиях воздействия помех произвольной поляризации

Изобретение относится к антенной технике и может быть использовано для создания в условиях завода-изготовителя вибраторных, фазированных или цифровых антенных решеток (АР) для приема/передачи сигналов в метровом диапазоне частот различной поляризации в широком секторе однолучевого сканирования по срокам и стоимости на порядок меньшими, чем создание существующих крупногабаритных АР

Изобретение относится к антенной технике и может быть использовано для создания в условиях завода-изготовителя вибраторных, фазированных или цифровых антенных решеток (АР) для приема/передачи сигналов в метровом диапазоне частот различной поляризации в широком секторе однолучевого сканирования по срокам и стоимости на порядок меньшими, чем создание существующих крупногабаритных АР

Изобретение относится к активным фазированным антенным решеткам (АФАР), состоящим из приемо-передающих модулей (ППМ), которые предназначены для использования в РЛС, системах связи и системах радиопротиводействия

Изобретение относится к радиолокации для использования в качестве как активной, так и пассивной фазированной антенной решетки (АФАР)

Изобретение относится к области радиотехники

Изобретение относится к системам управления лучом фазированных антенных решеток (ФАР) и может быть использовано при создании ФАР с беспроводной открытой оптической командной системой формирования диаграммы направленности и управления лучом, а также ФАР повышенной надежности в части системы управления лучом

Изобретение относится к радиотехнике и может быть использовано в антенно-фидерных устройствах в качестве направленной антенны линейной поляризации и, в частности, в радиотехнических системах обеспечения посадки летательных аппаратов
Наверх