Электрохимическая ячейка для получения пористых анодных оксидов металлов и полупроводников

Изобретение относится к области электрохимии, а конкретно к анодному окислению металлов и полупроводников. Электрохимическая ячейка включает электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке. Устройство регулирования температуры контактирует с поверхностью электропроводящего держателя образца. В качестве устройства регулирования температуры используют термоэлемент Пельтье. Технический результат: повышение воспроизводимости, контролируемости, однородности процесса анодного окисления металлических и полупроводниковых образцов. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области электрохимических процессов, а конкретно к анодному окислению металлов и полупроводников.

Известна электрохимическая ячейка [1]. Она включает электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке, обеспечивающее регулирование температуры электролита в диапазоне от 0 до 20°С. Недостатком данной ячейки является то, что в ней осуществляется термостабилизация объема электролита, а не зоны электрохимической реакции, где происходит основное выделение тепла, что не обеспечивает постоянства напряженности электрического поля в растущем оксиде, а следовательно, повышенной воспроизводимости процесса анодного окисления.

Известна электрохимическая ячейка [2]. Она также включает электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке, обеспечивающее регулирование температуры объема электролита. Недостатком данной ячейки так же, как и в первом аналоге, является то, что в ней осуществляется термостабилизация объема электролита, а не зоны электрохимической реакции, где происходит основное выделение тепла, что не обеспечивает постоянства напряженности электрического поля в растущем оксиде, а следовательно, повышенной воспроизводимости процесса анодного окисления.

Наиболее близким к заявляемой электрохимической ячейке является устройство [3]. Данная электрохимическая ячейка включает электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке, предотвращающее рост температуры электролита. Недостатком данной ячейки так же как и в предыдущих аналогах, является то, что в ней осуществляется термостабилизация объема электролита, а не зоны электрохимической реакции, где происходит основное выделение тепла, что не обеспечивает постоянства напряженности электрического поля в растущем оксиде, а следовательно, повышенной воспроизводимости процесса анодного окисления.

Задача - повышение воспроизводимости, контролируемости, однородности процесса анодного окисления металлических и полупроводниковых образцов.

Сущность изобретения заключается в следующем. Электрохимическая ячейка включает электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке. Устройство регулирования температуры контактирует с поверхностью электропроводящего держателя образца. В качестве устройства регулирования температуры может быть использован термоэлемент Пельтье.

На чертеже приведено схематическое изображение электрохимической ячейки, где: 1 - ванна с электролитом, 2 - электропроводящий держатель образца, 3 - термоэлемент Пельтье, 4 - радиатор, 5 - противоэлектрод, 6 - электролит, 7 - анодируемый образец, 8 - блок управления, 9 - датчик контроля температуры.

Согласно известным представлениям основное падение напряжения происходит в оксидной пленке, образующейся на поверхности образца. Определяющим параметром процесса анодного окисления является напряженность электрического поля в растущем оксиде, которая зависит от температуры. Для обеспечения воспроизводимости процесса анодного окисления необходимо регулировать температуру растущего на поверхности образца оксида (т.е. температуру в зоне реакции). Это может быть достигнуто, если устройство регулирования температуры располагается в непосредственной близости от обрабатываемого образца. Поскольку образец располагается на электропроводящем держателе, чтобы обеспечивался доступ травителя к обрабатываемой его рабочей поверхности, то устройство регулирования температуры для максимально точного поддержания требуемой температуры однородно во всей зоне реакции должно контактировать с поверхностью электропроводящего держателя образца, целесообразнее всего с его обратной стороной. В качестве устройства регулировки температуры может быть использован термоэлемент Пельтье, имеющий датчик контроля температуры и электронный блок управления (см. чертеж). Применение элемента Пельтье обусловлено тем, что он позволяет воспроизводить необходимую температуру равномерно по всей поверхности плоского держателя образца и может быть компактно реализован без необходимости подвода теплоносителей. Достоинством предлагаемого технического решения является обеспечение повышения воспроизводимости, контролируемости, однородности процесса анодного окисления металлических и полупроводниковых образцов в широком диапазоне их размеров.

Пример исполнения.

Электрохимическая ячейка включает электропроводящий держатель образца, выполненный из латуни, образец, представляющий собой металлическую пластину, фторопластовую ванну с электролитом, представляющим собой водный раствор кислоты, контактирующим с образцом, противоэлектрод, выполненный из нержавеющей стали, тоководы к держателю образца и противоэлектроду и устройство регулирования температуры, которое состоит из термоэлемента Пельтье в керамическом корпусе, датчика контроля температуры и блока управления. Термоэлемент Пельтье непосредственно контактирует с поверхностью электропроводящего держателя образца.

Источники информации

1. Патент Японии JP 2005264290, C25D 11/06, 2005.

2. Патент Канады СА 2425296, C25D 11/08, 2003.

3. Патент Тайваня TW 555891 В, C25D 11/04, 2003 - прототип.

1. Электрохимическая ячейка, включающая электропроводящий держатель образца, образец, ванну с электролитом, контактирующим с образцом, и устройство регулирования температуры в электрохимической ячейке, отличающаяся тем, что устройство регулирования температуры контактирует с поверхностью электропроводящего держателя образца.

2. Электрохимическая ячейка по п.1, отличающаяся тем, что в качестве устройства регулирования температуры использован термоэлемент Пельтье.



 

Похожие патенты:

Изобретение относится к гальванотехнике, в частности к линиям для гальванических и химических покрытий. .

Изобретение относится к области машиностроения и может быть использовано для восстановления крупногабаритных валов. .

Изобретение относится к области машиностроения и может быть использовано для восстановления шеек коленчатых валов. .

Изобретение относится к лазерной электрохимии, в частности к устройствам для нанесения токопроводящего материала путем осаждения на подложку, к устройствам для получения рисунка электрохимическим травлением, и может быть использовано при травлении печатных схем.

Изобретение относится к гальванотехнике, в частности к устройствам для покрытия сложных внутренних поверхностей изделий, например, для покрытия внутренних поверхностей изогнутых труб малого сечения с использованием электролита, содержащего драгоценный металл.

Изобретение относится к области электролитического нанесения металлических покрытий в протоке электролита и может быть использовано, преимущественно, для хромирования длинномерных труб с отношением длины к внутреннему диаметру более 50 и толщиной покрытия более 200 мкм.

Изобретение относится к гальванотехнике и предназначено для нанесения покрытий на внутреннюю поверхность аксиально-расположенных отверстий детали, например отверстия блока аксиально-поршневого насоса, или групповой обработки деталей типа втулок.

Изобретение относится к гальванотехнике. .

Изобретение относится к области металлургии, конкретно к оборудованию для гальванопокрытий. .
Изобретение относится к технологии формирования износостойких, диэлектрических, антикоррозионных и декоративных оксидных или оксидно-керамических покрытий на изделиях из алюминиевых, магниевых и титановых сплавов, используемых в авиационной, машиностроительной, химической и строительной промышленности.

Изобретение относится к области электрохимической обработки металлов, а именно к процессам микроплазменной обработки в растворах электролитов, и может найти применение в машиностроении и других областях промышленности.

Изобретение относится к электролитическим способам нанесения анодных покрытий с использованием подвижного электролита и может быть использовано в машиностроении, радиоэлектронике, приборостроении, авиационной и судостроительной промышленности.

Изобретение относится к области машиностроения и может быть использовано в изделиях, содержащих детали, выполненные из железа и сплавов на его основе, работающие в агрессивных средах.
Изобретение относится к способам создания коррозионно-стойкого самосмазывающегося оксидного покрытия на поверхности стали и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности.

Изобретение относится к технологии формирования на поверхности изделий из алюминиевых, магниевых и титановых сплавов износостойких, диэлектрических, антикоррозионных и декоративных покрытий.

Изобретение относится к технологии формирования на поверхности изделий износостойких, диэлектрических, антикоррозионных и декоративных покрытий и может быть использовано для нанесения покрытий на изделия из алюминиевых, магниевых и титановых сплавов.

Изобретение относится к области нанесения защитно-декоративных покрытий на вентильные металлы и сплавы, преимущественно для нанесения покрытий черного цвета на изделия, выполненные из алюминия и титана и магния.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, авиационной и других отраслях промышленности. .

Изобретение относится к наноэлектронике, микроэлектронике и может быть использовано в микроэлектронных и микроэлектромеханических системах, а также для создания микро-, нанопроцессоров и нанокомпьютеров.

Изобретение относится к области электролитической обработки поверхности металлов
Наверх