Высокочувствительный (однофотонный) интегральный лавинный фотоприемник

Изобретение относится к технике машинного зрения и может быть использовано в высокочувствительных видеокамерах и фотоаппаратах, в частности для регистрации трехмерных изображений. Фотоприемник содержит лавинный фотодиод, выполненный на кремниевой подложке первого типа проводимости, включающий соединенную с первым контактом фотодиода первую приповерхностную область второго типа проводимости, расположенные под ней область генерации и умножения фототока и область его, окруженную охранной областью, приповерхностную область первого типа проводимости, соединенную со вторым контактом фотодиода, интегральную схему считывания, выполненную на той же подложке и соединенную со вторым контактом фотодиода общим электродом, а входом с первым контактом фотодиода. Охранная область выполнена в виде участка карманов второго типа проводимости, входящих в состав интегральной схемы считывания, а область генерации и умножения фототока выполнена на участке подложки, отделенном заглубленной областью первого типа проводимости, вход интегральной схемы считывания соединен с первым электродом фотодиода через разделительный конденсатор, образованный двумя электродами, принадлежащими двум слоям металлических межсоединений интегральной схемы считывания с разделительным межслойным диэлектриком, и через дополнительную схему формирования сигнала, включающую два МОП транзистора с каналами первого типа проводимости, причем первый транзистор соединен стоком со входом схемы считывания, затвором и истоком с первым электродом источника питания интегральной схемы считывания, второй транзистор соединен стоком со входом схемы считывания, затвором со вторым электродом источника питания, истоком - с разделительным конденсатором через резистор. Изобретение обеспечивает улучшение однородности параметров лавинных фотодиодов в многоэлементной ИС фотоприемника и повышение его надежности. 2 ил.

 

Изобретение относится к технике машинного зрения и может быть использовано в высокочувствительных видеокамерах и фотоаппаратах, в частности для регистрации трехмерных изображений.

Известны однофотонные интегральные лавинные фотоприемники, описанные в литературе: 1) IEEE Journal of Solid State Circuits, v.40, 9, sept. 2005, Cristiano Niclass, "Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes", 2) Proceedings of ESSCIRC, Grenoble, France, 2005, D.Stoppa, "A Single-Photon-Avalanche-Diode 3D Imager".

В обоих источниках описываются устройства, содержащие лавинный фотодиод с интегральной схемой считывания, выполненные на общей подложке.

Наиболее близким к заявленному изобретению является устройство, описанное в 1) IEEE Journal of Solid State Circuits, v.40, 9, sept. 2005, Cristiano Niclass, "Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes".

Указанное устройство содержит лавинный фотодиод, выполненный на кремниевой подложке первого типа проводимости, включающий соединенную с первым контактом фотодиода первую приповерхностную область второго типа проводимости, расположенную под ней область генерации и умножения фототока, окруженные охранной областью, приповерхностную область первого типа проводимости, соединенную со вторым контактом фотодиода, интегральную схему считывания, выполненную на той же подложке и соединенную со вторым контактом фотодиода общим электродом, а входом - с первым контактом фотодиода.

Однако известные устройства имеют недостатки: большую неоднородность параметров фотодиодов в многоэлементной интегральной схеме фотоприемника, низкую надежность из-за возможности разрушения (пробоя) затворов интегральной схемы считывания при изменении напряжения на фотодиодах.

Неоднородность параметров фотодиодов в фотоприемнике вызвана сложной конструкцией области размножения фотодиода, расположенной в стандартном кармане ИС с неоднородным профилем легирования. Возможность разрушения затворов интегральной схемы считывания связана с тем, что фотодиод непосредственно соединен с затворами схемы считывания. Через это соединение высокое напряжение смещения фотодиода может попасть на затворы схем считывания и разрушить их.

Техническим результатом настоящего изобретения является улучшение однородности параметров лавинных фотодиодов в многоэлементной ИС фотоприемника и повышение его надежности.

Указанный результат достигается за счет того, что в известном устройстве фотоприемника, содержащем лавинный фотодиод, выполненный на кремниевой подложке первого типа проводимости, включающий соединенную с первым контактом фотодиода первую приповерхностную область второго типа проводимости, расположенную под ней область генерации и умножения фототока, окруженные охранной областью, приповерхностную область первого типа проводимости, соединенную со вторым контактом фотодиода, интегральную схему считывания, выполненную на той же подложке и соединенную со вторым контактом фотодиода общим электродом, а входом - с первым контактом фотодиода, предложено:

- охранную область выполнить в виде участка карманов второго типа проводимости, входящих в состав интегральной схемы считывания, а область генерации и умножения фототока выполнить на участке подложки, отделенном заглубленной областью первого типа проводимости,

- вход интегральной схемы считывания соединить с первым электродом фотодиода через разделительный конденсатор, образованный двумя электродами, принадлежащими двум слоям металлических межсоединений интегральной схемы считывания с разделительным межслойным диэлектриком, и через дополнительную схему формирования сигнала, включающую два МОП транзистора с каналами первого типа проводимости, причем первый транзистор соединить стоком со входом схемы считывания, затвором и истоком с первым электродом источника питания интегральной схемы считывания, второй транзистор соединить стоком со входом схемы считывания, затвором со вторым электродом источника питания, истоком - с разделительным конденсатором через резистор.

Указанный выше технический результат достигается совокупностью перечисленных выше новых признаков изобретения.

Улучшение однородности достигается за счет того, что области умножения расположены на участках равномерно и слабо легированной подложки с точно фиксированными размерами, задаваемыми охранными и заглубленными областями.

Увеличение надежности достигается за счет соединения фотодиода со схемой считывания через разделительный конденсатор, образованный двумя электродами, принадлежащими двум слоям металлических межсоединений интегральной схемы считывания с разделительным межслойным диэлектриком, который в стандартном технологическом процессе имеет пробивное напряжение, большее, чем напряжение смещения фотодиода.

Перечень графических материалов, иллюстрирующих устройство, реализующее заявляемое изобретение:

Фиг.1 иллюстрирует известное устройство (прототип):

Фиг.1а - конструкцию фотодиода.

Фиг.1б - электрическую схему фотодиода со схемой считывания.

Фиг.2 иллюстрирует предлагаемое устройство:

Фиг.2а - конструкцию фотодиода.

Фиг.2б - электрическую схему фотодиода со схемой считывания.

Высокочувствительный (однофотонный) интегральный лавинный фотоприемник состоит (см. фиг.2) из лавинного фотодиода 1, выполненного на кремниевой подложке 2 первого типа проводимости, включающего соединенную с первым контактом 3 фотодиода первую приповерхностную область 4 второго типа проводимости, расположенную под ней область 5 генерации и умножения фототока, окруженные охранной областью 6, приповерхностную область первого типа проводимости 7, соединенную со вторым контактом 8 фотодиода, интегральную схему считывания 9, выполненную на той же подложке и соединенную со вторым контактом фотодиода общим электродом 10, а входом 11 с первым контактом 3 фотодиода, охранная область 6 выполнена в виде участка карманов второго типа проводимости, входящих в состав интегральной схемы считывания, а область умножения 5 выполнена на участке подложки, отделенном заглубленной областью первого типа проводимости 12, вход 11 интегральной схемы считывания 9 соединен с первым электродом 3 фотодиода через разделительный конденсатор 13, образованный двумя электродами, принадлежащими двум слоям металлических межсоединений интегральной схемы считывания с разделительным межслойным диэлектриком, и через дополнительную схему формирования сигнала 14, включающую два МОП транзистора 15 и 16 с каналами первого типа проводимости, причем первый транзистор 15 соединен стоком со входом 11 схемы считывания 9, затвором и истоком с первым электродом источника питания интегральной схемы считывания, второй транзистор 16 соединен стоком со входом 11 схемы считывания, затвором со вторым электродом источника питания, истоком - с разделительным конденсатором 13 через резистор 17.

Фотоприемник работает следующим образом.

Каждый фотон принимаемого излучения, попадая в область генерации и умножения 5 носителей фототока, вызывает их лавину, которая, разделяясь под действием электрического поля на дырки и электроны, создает на электроде 3 импульс напряжения отрицательной полярности. Этот импульс отделяется от постоянного потенциала смещения фотодиода конденсатором 13 и поступает на схему 14 формирования сигнала. Транзистор 15, работая в подпороговом режиме, задает на входе 11 схемы считывания 9 (КМОП инвертор) темновой уровень логической единицы (vdd). Лавинный отрицательный импульс ограничивается по амплитуде уровнем логического нуля (vgnd) транзистором 16 с резистором в цепи истока. Схема считывания 9 формирует на выходе стандартный цифровой КМОП сигнал, логическая единица которого соответствует фотону принимаемого излучения.

Настоящее описание изобретения, в т.ч. состава и работы устройства, включая предлагаемый вариант его исполнения, предполагает его дальнейшее возможное совершенствование специалистами и не содержит каких-либо ограничений в части реализации. Все притязания сформулированы исключительно в формуле изобретения.

Высокочувствительный (однофотонный) интегральный лавинный фотоприемник, содержащий лавинный фотодиод, выполненный на кремниевой подложке первого типа проводимости, включающий соединенную с первым контактом фотодиода первую приповерхностную область второго типа проводимости, расположенную под ней область генерации фототока и область его умножения, окруженные охранной областью, приповерхностную область первого типа проводимости, соединенную со вторым контактом фотодиода, интегральную схему считывания, выполненную на той же подложке и соединенную со вторым контактом фотодиода общим электродом, а входом с первым контактом фотодиода, отличающийся тем, что охранная область выполнена в виде участка карманов второго типа проводимости, входящих в состав интегральной схемы считывания, а область размножения выполнена на участке подложки, отделенном заглубленной областью первого типа проводимости, вход интегральной схемы считывания соединен с первым электродом фотодиода через разделительный конденсатор, образованный двумя электродами, принадлежащими двум слоям металлических межсоединений интегральной схемы считывания с разделительным межслойным диэлектриком, и через дополнительную схему формирования сигнала, включающую два МОП транзистора с каналами первого типа проводимости, причем первый транзистор соединен стоком со входом схемы считывания, затвором и истоком с первым электродом источника питания интегральной схемы считывания, второй транзистор соединен стоком со входом схемы считывания, затвором со вторым электродом источника питания, истоком - с разделительным конденсатором через резистор.



 

Похожие патенты:

Изобретение относится к полупроводниковым фоточувствительным приборам, конкретно к полупроводниковым лавинным фотодиодам с внутренним усилием сигнала. .

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для видеокамер и цифровой фотографии.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для однокристальных цифровых видеокамер и цифровой фотографии.

Изобретение относится к полупроводниковым фоточувствительным приборам с внутренним усилием сигнала. .

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например для видеокамер и цифровой фотографии.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников. .

Изобретение относится к полупроводниковым приборам, в частности к детекторам с высокой эффективностью регистрации светового излучения, в том числе видимой части спектра, и может быть использовано в ядерной и лазерной технике, а также в технической и медицинской томографии и т.п.

Изобретение относится к области микроэлектроники, а именно к полупроводниковым приемникам, и может быть использовано для регистрации излучения различных диапазонов спектра и заряженных частиц.

Изобретение относится к области микроэлектроники, а более конкретно к производству интегральных многоэлементных фотоприемников, например, для видеокамер и цифровой фотографии.

Изобретение относится к области светоизлучающих устройств, в частности к высокоэффективным светоизлучающим диодам на основе нитридов элементов третьей группы Периодической системы химических элементов Д.И.Менделеева и их твердых растворов (далее - III-нитриды)

Способ изготовления солнечного элемента содержит этапы формирования pn-перехода в полупроводниковой подложке, формирования пассивирующего слоя на светопринимающей поверхности и/или не принимающей свет поверхности полупроводниковой подложки и формирования электродов отбора мощности на светопринимающей поверхности и не принимающей свет поверхности. В качестве пассивирующего слоя формируют пленку оксида алюминия, имеющую толщину до 40 нм, при этом электрод формируют обжигом проводящей пасты при 500-900°C в течение от 1 секунды до 30 минут с образованием спеченного продукта, который проникает через пассивирующий слой, устанавливая электрический контакт между электродом и подложкой. В результате формирования пленки оксида алюминия с заданной толщиной на поверхности подложки можно добиться превосходных характеристик пассивации и превосходного электрического контакта между кремнием и электродом лишь путем обжига проводящей пасты, что является обычной технологией. Кроме того, этап отжига, который был необходим для достижения эффектов пассивации пленки оксида алюминия в прошлом, может быть устранен, резко снижая расходы. 5 з.п. ф-лы, 7 ил.

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO2, полупроводниковые квантовые точки и органический краситель, и заключается в том, что для уменьшения толщины слоя КТ, адсорбированных на поверхность TiO2, вводится технологический этап предварительного удаления избыточного количества молекул солюбилизатора полупроводниковых квантовых точек из раствора и частично с поверхности квантовых точек. Это позволяет избежать самообразования дендритных структур на поверхности мезопористого TiO2 и приводит к формированию тонких слоев квантовых точек на поверхности мезопористого TiO2, обеспечивающих условия для высокоэффективного переноса заряда. Соответственно увеличивается эффективность преобразования энергии в фотовольтаической ячейке. 6 ил.

Изобретение может быть использовано для создания устройств, различного назначения, например, датчиков пламени; датчиков электрической искры; оптической локации в УФ-спектре; оптической связи в УФ-диапазоне; дозиметрии УФ-излучения, быстродействующих УФ-фотоприемников для эксимерных лазеров; приборов контроля люминесценции в УФ-спектре; флуоресцентной спектрометрии; приборов ночного видения и т.п. Приемник электромагнитного излучения включает полупроводниковую структуру с электронно-дырочным переходом на основе арсенида галлия и внешние электроды, упомянутый электронно-дырочный переход выполнен компенсирующей глубокой примесью хрома с неоднородным по толщине слоя арсенида галлия распределением примеси, причем в приповерхностной области полупроводниковой структуры сформирована область с концентрацией хрома, превышающей концентрацию доноров в исходном арсениде галлия, а во внутреннем объеме полупроводниковой структуры сформирована область с концентрацией хрома меньше, чем концентрация доноров в исходном арсениде галлия. Изобретение обеспечивает расширение спектрального диапазона работы фотоприемного устройства от инфракрасного излучения до вакуумного ультрафиолета. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к полупроводниковым приборам, чувствительным к свету. Гетероструктура содержит подложку, выполненную из AlN, на которой размещено три сопряженных друг с другом выполненных из In1-xGaxN двухслойных компонентов с p-n-переходами между слоями. Двухслойные компоненты сопряжены между собой туннельными переходами. Ширина запрещенной зоны компонентов возрастает в направлении к поверхности, предназначенной для облучения солнечной энергией. Между подложкой и смежным с подложкой двухслойным компонентом предусмотрены релаксационные слои, выполненные из твердых растворов металлов третьей группы. Релаксационные слои позволяют уменьшить рассогласование кристаллической решетки подложки и двухслойных компонентов. Ширина запрещенной зоны двухслойных компонентов удовлетворяет соотношению: Eg1:Eg2:Eg3=1:2,23:3,08, где 0,65≤Eg1≤0,85. Благодаря такому соотношению параметров двухслойных компонентов солнечная энергия поглощается во всем диапазоне спектра солнечного излучения, что позволяет повысить эффективность преобразования солнечной энергии в электрическую. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение может быть использовано в космических летательных аппаратах и автономных системах, как высокопроизводительное экологически чистое средство получения электрической энергии в различных областях промышленности. Однопереходной солнечный элемент включает р-кремниевую подложку из кремния p-типа Si(100) предварительно обработанную кислотой HF. На верхней стороне подложки расположен слой пленки n-типа толщиной 4-5 нм из аморфного нитрида кремния смешанного с нитридом кремния нанокристаллической структуры, нанесенный методом магнетронного напыления в аргоне из твердотельной мишени Si3N4. Электрические контакты сформированы методом магнетронного напыления. При этом, на верхней стороне элемента контакты выполнены из Ag в виде гребенки. А электрический тыльный контакт, расположенный на обратной стороне подложки Si(100), выполнен из Ag либо Cu. Изобретение обеспечивает эффективность 7.41% без дополнительных просветляющих, защитных или каких либо других слоев и без применения концентраторов солнечного излучения. 9 ил.

Использование: для изготовления покрытия фотовольтаической ячейки. Сущность изобретения заключается в том, что покрытие для фотовольтаической ячейки выполнено в виде слоев толщиной 10-100 нм из углеродных наноматериалов и оксида олова (IV). Технический результат: обеспечение возможности расширения арсенала покрытий для фотовольтаической ячейки с низким электросопротивлением при относительно высоком светопропускании. 2 н. и 12 з.п. ф-лы, 11 ил., 2 табл.

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V. Также предложено фотоэлектрическое устройство, включающее подложку (102); первый солнечный элемент (108), расположенный над подложкой (102); контакт (116), расположенный над первым солнечным элементом (108); туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ); буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102). Изобретение обеспечивает улучшение качества материала туннельного перехода, что обеспечивает высокую кристаллическую чистоту солнечных элементов над туннельным переходом, которая в свою очередь обеспечивает повышение эффективности преобразования солнечного излучения. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается. Снижение остаточного напряжения в солнечной батарее, а также повышение коэффициента ее полезного действия является техническим результатом изобретения. 14 з.п. ф-лы, 7 ил.

Штабелевидная интегрированная многопереходная солнечная батарея с первым элементом батареи, причем первый элемент батареи включает в себя слой из соединения InGaP с первой константой решетки и первой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и вторым элементом батареи, причем второй элемент батареи включает в себя слой из соединения InmРn со второй константой решетки и второй энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и третьим элементом батареи, причем третий элемент батареи включает в себя слой из соединения InxGa1-xAs1-yPy с третьей константой решетки и третьей энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и четвертым элементом батареи, причем четвертый элемент батареи включает в себя слой из соединения InGaAs с четвертой константой решетки и четвертой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, причем для значений энергии запрещенной зоны справедливо соотношение Eg1>Eg2>Eg3>Eg4, и между двумя элементами батареи сформирована область сращения плат. Изобретение обеспечивает возможность повышения эффективности преобразования солнечного света. 16 з.п. ф-лы, 6 ил.
Наверх