Устройство определения структурного состояния волоконно-полимерного композиционного материала

Изобретение может быть использовано для контроля качества композиционного материала при его изготовлении и контроля его структурного состояния при эксплуатации. Устройство определения структурного состояния волоконно-полимерного композиционного материала содержит испытуемое изделие в виде намоточной ленты из синтетических волокон, ориентированных параллельно и пропитанных компаундом с наполнителем, линейный измерительный преобразователь, внедренный в структуру материала изделия вдоль его волокон и размещенный по середине волокон пряди волоконных нитей, вакуумную печь. В устройство дополнительно введены как минимум еще два линейных измерительных преобразователя, расположенных по разные стороны от первого и на равных расстояниях от него по ширине изделия. Чувствительные элементы каждого из трех преобразователей выполнены из углеродных нитей, соизмеримых по диаметру синтетическим волокнам. Цепи чувствительных элементов каждого линейного измерительного преобразователя последовательно присоединены к входам и выходам омметра. Изобретение обеспечивает высокие достоверность и точность измерений. 1 ил.

 

Изобретение относится к области неразрушающего контроля, в частности к двойным технологиям, а именно контроля качества при создании волоконно-полимерного композиционного материала, получаемого в намоточном производстве, и контроля его структурного состояния при эксплуатации этого материала, за счет встроенного измерительного чувствительного элемента в структуру материала, и может быть использовано в системах жизнедеятельности, сосудах давления, обшивках планеров, для пожаротушения, антиобледенения, ракетно-космической, авиационной, машиностроительной техники и в др. отраслях.

Известны устройства определения структурного состояния волоконно-полимерного композиционного материала, содержащие композиционную матрицу в виде пряди синтетических волоконных нитей, ориентированных параллельно и пропитанных компаундом с наполнителем, измерительный чувствительный элемент, установленный в структуре материала, вакууммированную печь и регистратор [Сосуды давления из композиционных материалов в конструкциях летательных аппаратов. - М.: ЦНИИ информации, 1085. C.1, 121-129, аналог прилагается].

Недостатками этих устройств являются чрезвычайно большая трудоемкость, дороговизна, неопределенность получения качества материала, полученного методом намотки. Структурное состояние материала оценивается по величине предела прочности, формулированной от сравнения экспериментальных образцов, причем технологические параметры и режимы полимеризации получения материала назначаются приближенно, что снижает достоверность и точность определения качества структуры отвержденного материала, поэтому достоверность и точность контроля устройства не удовлетворительные.

Наиболее близким техническим решением к заявляемому представляется устройство определения структурного состояния волоконно-полимерного композиционного материала, содержащее волоконные синтетические нити, ориентированные параллельно друг другу и пропитанные термопластиком с наполнителем, измерительный чувствительный элемент в виде сердцевины оптического волокна (оптическое волокно без оболочки), установленной вдоль волокон основы материала, вакууммированную печь и регистратор [Kuang. S.C.,Canwell W.J. In situ process monitoring of a thermoplastic-based fibre comprosite optikal fidre sensors // Smart Materials and Struktures. - 2002. - V.11 - №10=-Р.840-847, реферат на русском языке и текст статьи на английском языке прилагаются].

Физика контроля светового потока заключается в том, что коэффициент преломления сердцевины оптического волокна выбирают ниже того же коэффициента композиционного материала. При совместном их нагреве коэффициент исследуемого материала преломления уменьшается, что вызывает увеличение светового потока сердцевины.

Недостатком устройства является низкая достоверность и точность определения качества структуры материала, поскольку значение температуры выдержки при отверждении материала вызывает нелинейное изменение светового потока из-за наличия в нем остаточных воздушных пузырей и влаги в них, при этом световой поток даже в отсутствие пузырей и влаги по мере его прохождения вдоль сердцевины будет рассеиваться по структуре материала из-за того, что чувствительный элемент (сердцевина) выполнен без оболочки. Оптическое волокно в оболочке применять нельзя, так как она нарушит структуру, которая вызовет снижение механических свойств композиционного материала.

Сущность предлагаемого технического решения заключается в том, что в устройстве определения структурного состояния волоконно-полимерного композиционного материала, содержащем испытуемое изделие в виде намоточной ленты из синтетических волокон, ориентированных параллельно и пропитанных компаундом с наполнителем, линейный измерительный преобразователь, внедренный в структуру материала изделия вдоль их волокон и размещенный по середине волокон пряди волоконных нитей, вакуумную печь и регистратор, введены как минимум еще два дополнительных линейных измерительных преобразователя, расположенных по разные стороны от первого и на равных расстояниях от него по ширине изделия, при этом чувствительные элементы каждого из трех преобразователей выполнены из углеродных нитей, соизмеримых по диаметру синтетическим волокнам.

Техническим преимуществом изобретения является высокие достоверность и точность определения структурного состояния композиционного материала вследствие использования не менее трех измерительных чувствительных элементов по ширине намотанного листового материала, уложенных навсегда в структуру материала, а следовательно, обеспечивающих контроль текущего состояния материала при его изготовлении и при эксплуатации.

На чертеже показана блок схема устройства.

Схема содержит образец 1 из волоконно-полимерного композиционного материала, вакуумную печь 5, в которой размещен образец 1, измерительные чувствительные элементы 2, 3, 4 в виде углеродных нитей и регистратор 6, к входам и выходам которого присоединены последовательно цепи чувствительных элементов 2-4. Элементы 2-4 расположены по ширине образца симметрично и равноудалены друг от друга с тем, чтобы была возможность для достоверности и объективности контроля поля образца 1 по его ширине.

Вакуум в печи создают умеренный (порядка 130·10-1 Па) для того, чтобы исключить попадание в материал инородных частиц, имеющихся в окружающей среде полости печи, а также летучих продуктов и паров растворителей, входящих в состав связующего. Температуру в вакуумной печи поднимают до значений от 180...200°С в зависимости от используемого связующего, т.е. смол, которые имеют разброс по максимальной температуре отверждения. Выше указанных значений температур их поднимать не следует, так как связующее может рыхлиться и разрушаться.

В качестве регистратора 6 может быть любой измерительный прибор, например омметр.

Работа устройства. В параллельно ориентированные волоконные нити композиционного материала, пропитанные термопластиком с наполнителем, укладывают вдоль волоконных нитей (между) не менее трех углеродных нитей, равноотстоящих друг от друга. Полученную композиционную матрицу вакууммируют, нагревают до заданной температуры, зависящей от связующего компонента, выдерживают матрицу при этой температуре до времени полного отверждения материала, измеряют электрическое сопротивление каждой углеродной нити в течение времени отверждения и по стабилизации величины относительного электрического сопротивления судят об отвержднении материала и его структурном состоянии. Подтверждением свидетельства стабилизации электрического сопротивления отвержденного материала служит отсутствие воздушных пузырей и влаги в отвержденном материале.

Техническим преимуществом изобретения является высокие достоверность и точность определения структурного состояния композиционного материала вследствие использования не менее трех измерительных чувствительных элементов по ширине намотанного листового материала, уложенных навсегда в структуру материала, а следовательно, обеспечивающих контроль текущего состояния материала при его изготовлении и при его эксплуатации.

Устройство определения структурного состояния волоконно-полимерного композиционного материала, содержащее испытуемое изделие в виде намоточной ленты из синтетических волокон, ориентированных параллельно и пропитанных компаундом с наполнителем, линейный измерительный преобразователь, внедренный в структуру материала изделия вдоль его волокон и размещенный посередине волокон пряди волоконных нитей, вакуумную печь, отличающееся тем, чтов устройство введены как минимум еще два дополнительных линейных измерительных преобразователя, расположенных по разные стороны от первого и на равных расстояниях от него по ширине изделия, при этом чувствительные элементы каждого из трех преобразователей выполнены из углеродных нитей, соизмеримых по диаметру синтетическим волокнам, цепи чувствительных элементов каждого линейного измерительного преобразователя последовательно присоединены к входам и выходам омметра.



 

Похожие патенты:

Изобретение относится к эксплуатации автотракторной техники, в частности к способам контроля качества топлива и подготовки топлива к сгоранию. .

Изобретение относится к области контроля качества железобетонных конструкций неразрушающими методами, а именно к измерению напряженно-деформируемого состояния арматуры покрытий и перекрытий вантовой системы и может найти применение для мониторинга зданий и сооружений.

Изобретение относится к электротехнике и может быть использовано при эксплуатации подовых блоков, входящих в токопроводящий узел катода алюминиевых электролизеров.

Изобретение относится к области неразрушающего контроля (НК) поверхностных слоев токопроводящих материалов (ПСТМ) изделий в процессе их производства и эксплуатации.

Изобретение относится к средствам измерения состава газовых смесей и может быть использовано для контроля газовой атмосферы в помещениях промышленных предприятий с опасными условиями производства, в частности для обеспечения водородной взрывобезопасности под защитной оболочкой АЭС.

Изобретение относится к способам определения прочности волокнистых материалов и может быть использовано для определения прочности волокна хризотил-асбеста на стадии разведки месторождения, разработки, обогащения и промышленного использования готовой продукции.

Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. .

Изобретение относится к измерительной технике, в частности к измерению влажности древесины. .

Изобретение относится к устройствам для измерения электропроводности влажных дисперсных природных и искусственных материалов, а именно к конструкциям измерительных сосудов и электродов и может найти применение для определения электропроводности влажных грунтов и почв, керамических масс, цементных паст, концентрированных суспензий и других влажных дисперсных материалов

Изобретение относится к устройствам для измерения электропроводности влажных дисперсных природных и искусственных материалов, а именно к конструкциям измерительных сосудов и электродов, и может найти применение для определения электропроводности влажных грунтов и почв, керамических масс, цементных паст, концентрированных суспензий и других влажных дисперсных материалов

Изобретение относится к методам и средствам для измерения состава парогазовых сред и может быть использовано для контроля атмосферы в помещениях промышленных предприятий, в частности, для обеспечения водородной взрывобезопасности под защитной оболочкой атомных электрических станций

Изобретение относится к способу нанесения покрытия из оксида алюминия на деталь, имеющую поверхность из карбида кремния (SiC) и используемую в высокотемпературных областях техники

Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Предложен способ определения влажности древесины, в котором осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления, измеряют падение напряжения на эталонном сопротивлении и определяют влажность, при этом в фиксированный момент времени измеряют амплитуду напряжения, тока и крутизны соответствующих импульсных динамических характеристик, по которым регистрируют их комплекс информативных параметров: постоянную времени и предельное напряжение, начальный ток и его крутизну, которые служат для определения влажности по калибровочной характеристике, а калибровку проводят априори на границах адаптивного диапазона по образцу с известной влажностью и нормируемыми параметрами: постоянной времени и предельным напряжением, начальным током и крутизной при измерении в фиксированный момент времени амплитуд напряжения, тока и крутизны соответствующих нормированных импульсных динамических характеристик. Способ согласно изобретению обеспечивает повышение точности и расширение диапазона контроля при заданных метрологических характеристиках. 1 табл., 6 ил.

(57) Изобретение относится к устройству для измерения электрических параметров твердых или жидких геологических образцов, таких как, например, горные породы, предпочтительно из нефтяных или газовых пластов-коллекторов, и насыщающие их текучие среды, содержащему полый корпус, выполненный из первой верхней половины и второй нижней половины, которые коаксиально скользят одна внутри другой, причем в указанном корпусе расположено гнездо для размещения по существу цилиндрического образца, при этом к указанному гнезду обращены две пары электродов, предназначенные для подвода тока в образец и для измерения напряжения на концах указанного образца, и отличающемуся тем, что указанные пары электродов являются парами копланарных электродов, каждая из которых расположена на одном конце указанного гнезда. Изобретение обеспечивает возможность создания устройства для измерения электрических параметров геологических образцов с использованием двух и четырех электродов с их быстрым чередованием и достаточной точностью. 14 з. п. ф-лы, 7 ил.

Изобретение может быть использовано при изготовлении летательных аппаратов. Способ определения электрической характеристики композитного материала для изготовления летательного аппарата, в котором, по меньшей мере, к одному образцу, выполненному из композитного материала, прижимают две накладки, осуществляя плотную подгонку, по меньшей мере, одной из накладок и отверстия этого или каждого образца, определяют значение электрического сопротивления сборки, образованной накладками и образцом, и выводят на основании полученного значения значение электрического сопротивления композитного материала. Изобретение обеспечивает упрощение определения электрической характеристики композитного материала. 3 н. и 5 з.п. ф-лы, 1 табл., 11 ил.

Предложены способ и система определения периода схватывания химически активного материала. Способ включает непрерывное измерение электрического свойства материала для получения временной зависимости удельного сопротивления или его представления. Временная зависимость используется для определения времени начала схватывания и времени окончания схватывания. Время начала схватывания определено как время наступления наиболее быстрого подъема удельного сопротивления и время окончания схватывания определено как время локального максимума удельного сопротивления. 2 н. и 26 з.п. ф-лы, 15 ил., 1 табл.
Наверх