Приемное устройство теплового потока оптического излучения исследуемого объекта

Заявленное изобретение может быть использовано в теплопеленгации источников теплового потока для обнаружения движущихся объектов, например кораблей, самолетов, вертолетов и т.д. Достигаемый технический результат от использования предлагаемого изобретения выражается в упрощении и надежности устройства с одновременным снижением его себестоимости. Указанный результат достигается за счет того, что приемное устройство теплового потока содержит приемник с преобразователем теплового потока в электрический сигнал, усилитель и регистрирующее устройство, при этом приемник выполнен в виде растрового устройства фасеточного типа и концентратора, растровое устройство выполнено в виде пакета плоскопараллельных пластин, расположенных на заданном расстоянии друг от друга, размещенного в корпусе-каркасе в виде параллелепипеда, к которому жестко крепится концентратор в виде усеченной пирамиды с основанием трапецеидальной формы, соответствующим размеру выхода растрового устройства, а ее вершина соответствует размеру площади преобразователя теплового потока, выполненного в виде фоторезистора. 3 ил.

 

Изобретение относится к инфракрасным или в видимой области спектра системам обнаружения или автоматического сопровождения движущихся объектов и может быть использовано в теплопеленгации источников теплового потока для обнаружения движущихся объектов, например кораблей, самолетов, вертолетов и т.д. Может быть применено в приборах ночного видения, в системах перехвата излучающих объектов, в системах передачи и приемов сигналов, например в оптической телефонии и телеграфе.

Известен теплопеленгатор (см. патент RU № 2046369, Кл. G01S 3/78, опубл. 1995), содержащий основание, жестко связанное с корпусом носителя, оптическую систему, в которой размещен приемник излучения, блок питания и блоки первичной и вторичной обработки сигналов.

Однако данное устройство достаточно сложное из-за наличия оптической системы линз, зеркал, призм, вращающихся деталей.

Наиболее близким по технической сущности является теплопеленгатор, описанный в книге И.Г.Ильина, Инфракрасные лучи, издательство ДОСААФ, Москва, 1961, с.25-26, рис.7.

Известное устройство включает в себя приемник инфракрасных лучей с вогнутым параболическим зеркалом, модулирующее устройство, усилитель, связанный на выходе с исполнительным механизмом.

Однако данное устройство обладает рядом недостатков: наличие оптической системы, сложного модулирующего устройства, электронно-преобразовательных узлов, высокая чувствительность к механическим, термическим и химическим воздействиям, при этом устройство обладает значительной дороговизной.

Технический результат от использования предлагаемого изобретения выражается в упрощении и надежности устройства с одновременным снижением его себестоимости.

Технический результат от использования достигается за счет того, что приемное устройство теплового потока оптического излучения исследуемого объекта включает приемник с преобразователем теплового потока в электрический сигнал, усилитель и регистрирующее устройство, при этом приемник выполнен в виде растрового устройства фасеточного типа и концентратора, причем растровое устройство выполнено в виде пакета плоскопараллельных пластин, размещенного в корпусе-каркасе в виде параллелепипеда, к которому жестко крепится концентратор в виде усеченной пирамиды с основанием трапецеидальной формы, соответствующим размеру выхода растрового устройства, а ее вершина соответствует размеру площади преобразователя теплового потока исследуемого объекта в электрический сигнал, выполненного в виде фоторезистора, сигнал фотопотока которого усиливается и поступает в регистрирующее устройство.

Техническая сущность поясняется чертежами (фиг.1 - общий вид, фиг.2 - вид растрового устройства в виде пакета плоскопараллельных пластин, фиг.3 - схема передачи сигнала от приемного устройства на исполнительный механизм, в которой 1 - приемное устройство, 2 - усилитель, 3 - графический дисплей, 4 - компьютер).

Приемное устройство теплового потока оптического излучения исследуемого объекта состоит из трех основных элементов: растрового устройства фасеточного типа 1, концентратора 2 теплового потока, преобразователя теплового потока в электрический сигнал, выполненного в виде фоторезистора 3. Растровое устройство 1 состоит из пакета плоскопараллельных пластин 4 определенных размеров, расположенных на заданном расстоянии друг от друга. Пакет пластин расположен в корпусе-каркасе 5, выполненном в виде параллелепипеда. Концентратор 2 теплового потока выполнен в виде усеченной пирамиды с основанием в форме трапеции, которое соответствует размеру выхода растрового устройства, вершина усеченной пирамиды соответствует размеру площади преобразователя 3 теплового потока. Корпус 5 жестко крепится к концентратору 5 теплового потока. Пластины в растровом устройстве располагаются параллельно относительно друг друга, а их количество пропорционально мощности приходящего потока излучения, т.е. чем больше число пластин, тем больше мощность полезного сигнала. В конечном итоге количество пластин, входная площадь растра зависит от конкретного назначения данного устройства и определяется расчетно-экспериментальным путем.

Устройство работает следующим образом: поток оптического излучения от исследуемого объекта поступает между плоскопараллельными пластинами 4 и попадает на внутреннюю поверхность трапецеидального основания концентратора 2, отражается от нее, фокусируется до размера площади фоторезистора 3 - преобразователя теплового потока в электрический сигнал. Максимум теплового потока соответствует положению источника, расположенного на оси симметрии растрового устройства 1, концентратора 2 и фоторезистора 3, а смещение объекта от оси симметрии вызывает изменение величины потока и сигнала фототока, которое затем усиливается и поступает на регистрирующее устройство, отслеживающую систему и т.п.

Экспериментальный образец данного устройства был выполнен следующим образом: растровое устройство было изготовлено из пакета 40 плоскопараллельных пластин из трансформаторной стали 6 толщиной 0,25 мм, расстояние между ними 1 мм. Концентратор выполнен из полированного алюминиевого листа. Площадь растрового устройства составила 1,25·10-3 м2, при этом расстояние до исследуемого объекта составило 5 метров, а приходящая мощность - 100 Вт.

Таким образом, регистрация излучаемого объекта, его перемещение относительно центральной оси системы осуществляются за счет узконаправленности растрового устройства 1 (задается размерами пластин и расстоянием между ними), концентрацией теплового потока до размеров фоторезистора 3 и последующим усилением фототока до управляемого регистрирующего сигнала, который отслеживается на экране графического дисплея и направляется для дальнейшей обработки информации на компьютерное устройство (см. схему - фиг 3).

Предлагаемое устройство по сравнению с прототипом обладает простотой и надежностью. По ориентировочным расчетам себестоимость данного устройства ниже в 10 раз по сравнению с прототипом.

Приемное устройство теплового потока оптического излучения исследуемого объекта, включающее приемник с преобразователем теплового потока в электрический сигнал, усилитель и регистрирующее устройство, отличающееся тем, что приемник выполнен в виде растрового устройства фасеточного типа и концентратора, причем растровое устройство выполнено в виде пакета плоскопараллельных пластин и размещено в корпусе-каркасе в виде параллелепипеда, к которому жестко крепится концентратор в виде усеченной пирамиды с основанием трапецеидальной формы, соответствующим размеру выхода растрового устройства, а ее вершина соответствует размеру площади преобразователя теплового потока исследуемого объекта в электрический сигнал, выполненного в виде фоторезистора, сигнал фотопотока которого усиливается и поступает в регистрирующее устройство.



 

Похожие патенты:

Изобретение относится к области приборостроения, измерительной и информационной техники, точнее к оптико-электронным приборам, обнаруживающим и измеряющим координаты воздушных объектов по их инфракрасному (далее ИК) излучению, а также обнаруживающим наличие облучения лазерным излучением с определением направления в азимутальной плоскости, и может быть использовано для решения задач защиты от поражения наземных объектов авиационными управляемыми ракетами.

Изобретение относится к области приборостроения, измерительной и информационной техники, точнее к оптико-электронным приборам, обнаруживающим и измеряющим координаты воздушных объектов по их инфракрасному (далее ИК) излучению, а также обнаруживающим наличие облучения лазерным излучением с определением направления в азимутальной плоскости, и может быть использовано для решения задач защиты от поражения наземных объектов авиационными управляемыми ракетами.

Изобретение относится к оптико-электронным следящим системам (ОЭСС) с импульсной модуляцией принимаемого излучения. .

Изобретение относится к гироскопическим приборам, которые используются в качестве датчика угла пеленга на управляемых ракетах, системах навигации и стабилизации. .

Изобретение относится к области радиотехники, в частности, к измерителям направления с использованием систем с вращающимся лучом. .

Изобретение относится к области двумерных телевизионных следящих систем. .

Изобретение относится к области гироскопического приборостроения, системам навигации и стабилизации. .

Изобретение относится к оптико-электронным системам пеленгации и может быть использовано в устройствах обнаружения и наблюдения объектов в оптическом диапазоне длин волн.

Изобретение относится к области ракетной техники и может быть использовано при проведении наземных испытаний ракет, предназначенных для поражения визуально видимых наземных и надводных целей.

Изобретение относится к области приборостроения, измерительной и информационной технике, точнее к оптико-электронным приборам, обеспечивающим обнаружение факта и направления облучения защищаемого объекта лазерным излучением, и может быть использовано для решения задачи предупреждения об угрозе атаки охраняемого объекта, на котором оно установлено, как для наземных систем вооружения, так и для авиации и ракетной техники

Изобретение относится к пеленгаторам для определения направления с использованием систем с вращающимся лучом

Изобретение относится к оптической технике и может быть использовано для определения угловых координат различных объектов, например, в сельском хозяйстве при разметке земельных участков, прокладке дренажных систем и так далее

Изобретение относится к области электронного приборостроения и может быть использовано в оптико-электронных следящих системах (ОЭСС)-инфракрасных следящих систем с гиростабилизированным полем зрения, обнаруживающих, распознающих и автосопровождающих инфракрасные источники излучения, находящиеся на небесном фоне или на фоне подстилающей поверхности земли при наличии ложных тепловых целей (ЛТЦ)

Изобретение относится к области оптического приборостроения, к оптическим устройствам пеленгации источников лазерного излучения, таких как дальномер либо целеуказатель, и может быть использовано в оптических системах самозащиты подвижных объектов военной техники от управляемого оружия путем постановки оптических либо других помех в направлении угрозы

Изобретение относится к области оптико-электронного приборостроения, а более конкретно к способам и устройствам пеленгации источников лазерного излучения, таких как дальномер либо целеуказатель, и может быть использовано в системах самозащиты подвижных объектов военной техники (например, бронетанковой) от управляемого оружия путем постановки оптических либо других помех в направлении угрозы

Изобретение относится к области оптико-электронного приборостроения, может быть использовано для поиска объектов по их инфракрасному излучению и других областях техники

Изобретение относится к области приборостроения, а точнее - к оптико-электронным следящим системам, предназначенным для обнаружения и автосопровождения инфракрасных (ИК) источников излучения на небесном фоне или на фоне подстилающей поверхности, и может быть использовано для обнаружения летательных аппаратов, судов, бронетанковой техники и т.п
Наверх