Электромагнитно-акустический преобразователь

Изобретение относится к области неразрушающего контроля, а именно к средствам определения текстурной анизотропии, толщины и напряженно-деформированного состояния конструкций и проката типа лент, полос, труб и др. Техническим результатом изобретения является расширение функциональных возможностей преобразователя. Электромагнитно-акустический преобразователь содержит магнитную систему с двумя компланарными разноименными полюсами и плоскую расположенную в параллельной полюсам плоскости на минимальном от них расстоянии катушку прямоугольной формы, в пределах площади удлиненной части витков которой лежат проекции полюсов на плоскость катушки. Дополнительно в преобразователь введена вторая плоская катушка прямоугольной формы, также расположенная в параллельной полюсам плоскости на минимальном от них и от первой катушки расстоянии, причем часть площади удлиненных витков второй катушки расположена в пределах проекции одного из полюсов магнитной системы на плоскость катушки, другая часть площади витков второй катушки находится в пространстве между проекциями полюсов на плоскость второй катушки, а витки первой и второй катушек в пределах площади их удлиненной части взаимно перпендикулярны. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области неразрушающего контроля, а именно к средствам определения текстурной анизотропии, толщины и напряженно-деформированного состояния конструкций и проката типа лент, полос, труб и др. из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем бесконтактном доступе, и предназначено для применения в металлургии, машиностроении, в авиастроении, автомобилестроении и др. отраслях промышленности.

Известны электромагнитно-акустические преобразователи (ЭМАП) для определения текстурной анизотропии, толщины и напряженно-деформированного состояния конструкций и проката типа лент, полос, труб и др. из черных и цветных металлов и сплавов, содержащие магнитную систему и индуктор в виде плоской катушки [Авт. свид. СССР №466930, БИ №14, 1975; Wormley S.J., Thompson R.B. A semi-automatik system for the ultrasonic measurement of texture. «Rev. Progr. Quant. Nondestruct. Eval. Vol. 6A: 1 half Proc. 13 Annu. Rev. Progr. Nondestruct. Eval., La Jolla, Calif, 3-8, 1986», New York; London, 1987].

Эти технические решения позволяют измерять время распространения ультразвуковых колебаний и расчетным путем определять величину текстурной анизотропии, толщины и напряженно-деформированного состояния конструкций и проката путем поворота ЭМАП на 90° или использования двух рядом расположенных ЭМАП для возбуждения сдвиговых горизонтально-поляризованных волн со смещениями вдоль или поперек направления прокатки или приложенного усилия. Однако эти решения имеют недостатки: невозможность автоматизации процесса контроля и низкая производительность измерений при использовании одного ЭМАП, недостаточная точность измерений из-за конечных размеров ЭМАП и изменения состояния поверхности и структуры материала различных локальных областей проката, на которых располагаются указанные ЭМАП.

Наиболее близким решением является устройство для ультразвукового контроля прочностных характеристик материала движущегося проката, содержащее магнитную систему, два ЭМАП, каждый из которых состоит из плоской катушки, расположенной параллельно поверхности проката, и блоки преобразования и обработки сигналов ЭМАП, при этом направление поляризации одного ЭМАП совпадает с направлением прокатки, а второго - перпендикулярно ему [Патент RU №2231055, G01N 29/04, 2003].

Это устройство имеет функциональные ограничения в том, что перпендикулярные направления поляризации создаются в разных точках (локальных областях) материала проката, а это не может обеспечить достоверность определения прочностных характеристик в заданной локальной области, а следовательно, выявить параметры и координаты дефектов структуры материала проката.

Сущность заявляемого изобретения состоит в том, что в электромагнитно-акустический преобразователь, содержащий магнитную систему с двумя компланарными разноименными полюсами и плоскую расположенную в параллельной полюсам плоскости на минимальном от них расстоянии катушку прямоугольной формы, в пределах площади удлиненной части витков которой лежат проекции полюсов на плоскость катушки, введена вторая плоская катушка прямоугольной формы, также расположенная в параллельной полюсам плоскости на минимальном от них и от первой катушки расстоянии, причем часть площади удлиненных витков второй катушки расположена в пределах проекции одного из полюсов магнитной системы на плоскость катушки, другая часть площади витков второй катушки находится в пространстве между проекциями полюсов на плоскость второй катушки, а витки первой и второй катушек в пределах площади их удлиненной части взаимно перпендикулярны.

В другом варианте электромагнитно-акустического преобразователя вторая катушка прямоугольной формы выполнена в виде двух одинаковых рядом расположенных секций, намотанных встречно, при этом внешние витки секций расположены в пределах проекций полюсов магнитов, а внутренние части витков расположены между проекциями полюсов на плоскость катушки.

На фиг.1 показан общий вид ЭМАП для возбуждения продольных и сдвиговых ультразвуковых волн в материале конструкций и проката; на фиг.2 - показан вариант ЭМАП.

ЭМАП содержит магнитную систему 1 с двумя компланарными разноименными полюсами 2, 3 и две плоские катушки 4 и 5, лежащие в параллельных полюсам плоскостях на минимальном расстоянии друг над другом. Магнитная система 1 выполнена с применением постоянных магнитов, возможно использование электромагнита, работающего от источника постоянного или импульсного тока.

Катушки 4 и 5 выполнены прямоугольной формы и расположены одна над другой с взаимно перпендикулярным положением витков в пределах площади их удлиненной части. Катушка 4 расположена симметрично относительно магнитной системы поперек полюсов магнитов 2 и 3, а протяженность ее удлиненной части должна быть не менее суммы размеров полюсов и межполюсного расстояния магнитной системы. Вторая катушка 5 смещена относительно продольной оси O1-O1 катушки 4. Часть площади удлиненных витков катушки 5 расположена в пределах проекции полюса 3 магнитной системы 1 на плоскость катушки, другая часть площади витков катушки 5 находится в пространстве между проекциями полюсов 2, 3 на плоскость катушки 5.

В другом варианте ЭМАП (фиг.2) вторая катушка 5 прямоугольной формы выполнена в виде двух одинаковых рядом расположенных секций, намотанных встречно, при этом внешние витки секций расположены в пределах проекций полюсов 2, 3 магнитной системы, а внутренние части витков расположены между проекциями полюсов на плоскость катушки 5.

В зависимости от конструктивных параметров и формы катушек 4, 5 и ориентации подмагничивающего поля магнитной системы 1 в объекте контроля 6 возбуждаются продольные (L) и сдвиговые горизонтально поляризованные (SH) волны линейной поляризации со смещениями (на фиг.1 показаны горизонтальными стрелками или кружочками) вдоль и поперек направления прокатки или приложенного усилия. Для возбуждения продольной волны L использованы магнитная система 1 и часть витков, расположенная между проекциями полюсов 2, 3 магнитной системы на плоскость катушки 5, то есть в области касательной составляющей магнитного поля (направление смещений в продольной волне совпадает с направлением ее распространения - на фиг.1 показано малыми вертикальными стрелками).

В другом варианте ЭМАП для возбуждения продольной волны используются расположенные между полюсами 1 и 2 внутренние примыкающие части витков катушки 4, включенные последовательно.

Для возбуждения сдвиговых горизонтально поляризованных (SH) волн с линейной поляризацией ЭМАП, представленный на фиг.1, 2, обеспечивает магнитные потоки противоположного направления через локальные области поверхности материала с наведенными вихревыми токами, созданными в материале электромагнитными полями катушек 3, 4, тоже противоположного направления. Под действием сил Лоренца в поверхностном слое объекта контроля 6 возникает SH-волна, распространяющаяся по нормали к поверхности слоя. Силы ориентированы нормально по отношению к линиям вихревого тока и параллельно поверхности слоя. При таких условиях SH-волна возбуждается синфазно во всей зоне действия сил Лоренца. Благодаря единственному направлению вектора смещений в колебаниях, генерируемых в материале и принимаемых им, можно исследовать зависимость скорости распространения сдвиговых SH-волн от ориентации вектора смещений по отношению к направлению проката.

Работа ЭМА преобразователя

ЭМА преобразователь для возбуждения УЗ колебаний располагают над поверхностью контролируемой конструкции или проката 6. Одновременно или поочередно на первую и вторую катушки индуктора ЭМА преобразователя подают импульсы высокочастотных колебаний, наводящие в поверхностном слое конструкции или проката вихревые токи. Благодаря воздействию на указанный поверхностный слой с вихревыми токами постоянным или импульсным магнитным полем в нем возбуждают продольную ультразвуковую волну и две сдвиговые горизонтально поляризованные волны со смещениями вдоль и поперек направления прокатки или приложения усилия. Далее фиксируют многократно отраженные акустические сигналы, выделяют из них эхосигналы продольной и каждой из сдвиговых волн и производят их корреляционную обработку. Временные интервалы между эхосигналами соответствующей поляризации измеряют и по соотношению этих временных интервалов определяют наличие и степень напряженно-деформированного состояния материала изделия. По скорости и времени распространения УЗ колебаний в материале проката судят о толщине проката.

Техническим преимуществом предложенного ЭМАП является то, что он позволяет одновременно определять с высокой точностью напряженно-деформированное состояние и толщину конструкций и проката из черных и цветных металлов и сплавов за счет возбуждения и приема продольных и сдвиговых ультразвуковых колебаний с линейной поляризацией в локальной области объекта контроля.

1. Электромагнитно-акустический преобразователь, содержащий магнитную систему с двумя компланарными разноименными полюсами и плоскую расположенную в параллельной полюсам плоскости на минимальном от них расстоянии катушку прямоугольной формы, в пределах площади удлиненной части витков которой лежат проекции полюсов на плоскость катушки, отличающийся тем, что в него введена вторая плоская катушка прямоугольной формы, также расположенная в параллельной полюсам плоскости на минимальном от них и от первой катушки расстоянии, причем часть площади удлиненных витков второй катушки расположена в пределах проекции одного из полюсов магнитной системы на плоскость катушки, другая часть площади витков второй катушки находится в пространстве между проекциями полюсов на плоскость второй катушки, а витки первой и второй катушек в пределах площади их удлиненной части взаимно перпендикулярны.

2. Электромагнитно-акустический преобразователь по п.1, отличающийся тем, что вторая катушка прямоугольной формы выполнена в виде двух одинаковых рядом расположенных секций, намотанных встречно, при этом внешние витки секций расположены в пределах проекций полюсов магнитов, а внутренние части витков расположены между проекциями полюсов на плоскость катушки.



 

Похожие патенты:

Изобретение относится к электромагнитным акустическим преобразователям для контроля ферромагнитных материалов, в частности, помимо прочего, газопроводов. .

Изобретение относится к ядерной технике, а более конкретно к устройствам для контроля геометрических параметров технологических каналов ядерных реакторов типа РБМК.

Изобретение относится к технике ультразвуковой диагностики, в частности к пьезоэлектрическим преобразователям для медицинских одномерных зондов (эхоэнцефалоскопических, эхоофтальмоскопических).

Изобретение относится к контрольно-измерительной технике и может быть использовано при дефектоскопии, структуроскопии и толщинометрии. .

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано для неразрушающего контроля многослойных изделий из металлов, пластиков и их комбинаций.

Изобретение относится к неразрушающему контролю изделий ультразвуковыми методами и может быть использовано для обнаружения дефектов в различных изделиях машиностроения, транспорта и других отраслей промышленности.

Изобретение относится к неразрушающему контролю объектов в экстремальных условиях (воздействие высокой температуры,гамма -n-излучения, перегретого пара, вибрации и т.п.), а именно к пьезоэлектрическим преобразователям акустической эмиссии, и может быть использовано для контроля герметичности первых контуров реакторных установок атомных электростанций.

Изобретение относится к области контрольно-измерительной техники и может быть использовано при дефектоскопии, структуроскопии и толщинометрии, в частности, при исследовании крупноструктурных и неоднородных материалов, таких как бетоны, пластики и горные породы.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано для локации дефектов методом акустической эмиссии. .

Изобретение относится к преобразователям для контроля целостности металлических изделий с помощью ультразвука, например для контроля трубопроводов

Изобретение относится к медицинской технике, а именно к ультразвуковым зондам для диагностики живого тела

Изобретение относится к области ультразвуковых устройств и может быть использовано в медицинской терапевтической или диагностической системе

Использование: для ультразвукового контроля. Сущность изобретения: система ультразвукового контроля объекта, содержащая множество передающих блоков и приемные блоки, при этом каждый передающий блок выполнен с возможностью генерировать ультразвуковые колебания на поверхности объекта и/или в объекте, причем каждый приемный блок выполнен с возможностью оптически измерять колебание поверхности объекта; приемный блок выполнен с возможностью принимать свет, падающий на него из зоны измерения; соответствующему приемному блоку соответствует одна зона измерения, так что приемный блок принимает свет, падающий на него из зоны измерения, при этом каждый передающий блок создает искровой промежуток, причем указанный искровой промежуток создает на поверхности и/или в объекте ультразвуковые колебания, причем между искровым промежутком и зоной измерения размещен экран, приемный блок включает в себя осветительный лазер, свет которого освещает поверхность в зоне измерения, и световодную систему, выполненную с возможностью излучать свет лазера в своем первом положении в первую зону измерения, а во втором положении - во вторую зону измерения, световодная система выполнена с возможностью разделять свет лазера и излучать его в одну или другую зоны измерения. Технический результат: повышение отношения сигнал/шум при низкой частоте повторения импульсов, а также повышение кпд преобразования электрической энергии в ультразвуковую. 2 з.п. ф-лы, 4 ил.

Изобретение относится к средствам фотоакустической визуализации. Устройство получения информации о субъекте содержит блок акустического преобразования, выполненный с возможностью принимать акустическую волну, генерируемую при облучении субъекта светом, и преобразовывать акустическую волну в электрический сигнал, и блок обработки, выполненный с возможностью получения поверхностного распределения интенсивности света или поверхностного распределения освещенности от света, падающего на поверхность субъекта, на основании информации о форме поверхности субъекта, получения распределения интенсивности света внутри субъекта на основании поверхностного распределения интенсивности света или поверхностного распределения освещенности и получения распределения оптических свойств внутри субъекта на основании электрического сигнала и распределения интенсивности света внутри субъекта. Способ получения информации о субъекте и энергонезависимый машиночитаемый носитель информации, на котором хранится программа, обеспечивают работу устройства. Использование изобретения позволяет точно определить распределение значений оптических характеристик в субъекте. 3 н. и 18 з.п. ф-лы, 9 ил.

Использование: для обнаружения дефектов посредством ультразвука. Сущность изобретения заключается в том, что главный корпус преобразователя имеет на своем переднем торце осциллирующую пластину, имеющую на виде сбоку изогнутую форму и соответствующую изогнутой с большим диаметром поверхности, образованной на изгибе слоистой части. На осциллирующей пластине главного корпуса преобразователя в виде матрицы в направлении изгиба и в направлении ширины распределено множество пьезоэлектрических генераторов. В каждой группе генераторов блок управления переключает пьезоэлектрические генераторы на передающие и принимающие пьезоэлектрические генераторы по очереди в направлении ширины согласно заранее установленной модели передачи/приема и обрабатывает сигнал, принятый от принимающего пьезоэлектрического генератора, согласно методу апертурного синтеза. Технический результат: обеспечение возможности реализовывать высокое отношение сигнал/шум и повышение точности обнаружения дефекта. 3 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к области техники зондовой микроскопии. Атомно-силовой сканирующий зондовый микроскоп (АСМ) содержит кантилевер, иглу кантилевера, систему обнаружения и регистрации отклонения кантилевера, включающую лазер, отражательную поверхность кантилевера и 4-секционный фотодиод с входным усилителем, систему 3-D позиционирования образца, контроллер АСМ для обработки результатов измерения, а также устройство для генерации квазичастиц, устройство для приема квазичастиц, отраженных от поверхности исследуемого образца, и дополнительный контроллер для построения карты отражающей способности поверхности. Техническим результатом изобретения является обеспечение возможности изучения динамики поведения квазичастиц на поверхности с нанометровым разрешением. 4 з.п. ф-лы, 3 ил.

Использование: для неразрушающего контроля деталей ультразвуком при погружении. Сущность изобретения заключается в том, что установка для контроля посредством ультразвука при погружении трубчатой детали с цилиндрической стенкой (2), заканчивающейся концевыми поперечными фланцами (3, 4), содержит ультразвуковые преобразователи излучатель (21) и приемник (22), управляемые при контакте с жидкостью взаимодействия, предназначенные для установки на одной линии соответственно с обеих сторон фланца, подлежащего контролю, и конструкцию (23) в виде U-образной или С-образной скобы (24), на торцах противоположных ветвей (26, 27) которой соответственно расположены преобразователь-излучатель (21) и преобразователь-приемник (22), находящиеся на одной линии относительно друг друга с образованием между собой пространства (32) для относительного прохождения фланца (3, 4), подлежащего контролю, и основание (28) которой шарнирно установлено в торце подвижного управляемого плеча (25), при этом она содержит короб для погружения (36), в котором расположена конструкция (23) в виде скобы (24), на которой находятся преобразователи (21, 22) и которая содержит жидкость для взаимодействия преобразователей между собой, причем упомянутый короб имеет соответствующую форму, чтобы быть расположенным на фланце (3, 4), подлежащем контролю, и включает в себя две части (37, 38), выполненные с возможностью зацепляться с и герметично перекрывать поперечный фланец и смежную цилиндрическую стенку трубчатой детали. Технический результат: обеспечение возможности полного контроля отдельных частей трубчатых деталей, а также сокращение габаритных размеров установки. 6 з.п. ф-лы, 9 ил.

Изобретение относится к манипуляционным контрольным устройствам (МКУ) ядерного реактора. МКУ содержит портал для неоднократного соединения с корпусом реактора (1) с выдвижной стойкой (2). Портал (1) имеет центральную часть (1.1) и как минимум три присоединяемых к ней несущих кронштейна (1.2), расположенные равномерно по контуру центральной части (1.1) и разработанные для неоднократного соединения с корпусом реактора. Центральная часть (1.1) портала (1) снабжена поворотным устройством (1.1.1) с отверстием посередине и приводом для поворота выдвижной стойки (2), причем данное поворотное устройство (1.1.1) снабжено фланцем для неоднократного соединения с выдвижной стойкой (2), в то время как выдвижная стойка (2) содержит направляющую стойки (2.1), наружную стойку (2.2) и в ней расположенную телескопическую внутреннюю стойку (2.3), разработанные для взаимного перемещения друг в друге. Направляющая стойки (2.1) снабжена соединительным элементом для неоднократного соединения с фланцем портала (1), в то время как внутренняя стойка (2.3) на нижнем конце снабжена поперечным путем (3) с хотя бы одной кареткой, предназначенной для размещения зондов, и распределительной коробкой для кабельной проводки к зондам. Технический результат – повышение эффективности осмотра открытого корпуса реактора. 9 з.п. ф-лы, 11 ил.
Наверх