Способ перегонки остаточных нефтепродуктов с предварительной магнитно-акустической обработкой

Изобретение относится к области первичной переработки нефти, в частности к вакуумной перегонке остатков атмосферного фракционирования нефти. Изобретение касается способа перегонки остаточных нефтепродуктов путем нагрева до кипения при давлении 0,01-15 кПа, вывода из зоны кипения образующихся паров, их дефлегмации с последующей конденсацией, перед ректификацией остаточные нефтепродукты подвергают сначала воздействию ультразвука с частотой излучателя 7-80 кГц, а затем воздействию магнитного поля с индукцией 0,05-0,5 Тл. Предлагаемый способ вакуумной перегонки остаточных нефтепродуктов позволяет увеличить глубину отбора дистиллятных фракций на 4-12 об.%. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к первичной переработке нефти, в частности к вакуумной перегонке остатков атмосферного фракционирования нефти.

Известен способ разделения остатка атмосферного фракционирования нефти на фракции с применением вакуумной перегонки [См. Мановян А.К. Технология первичной переработки нефти и природного газа. Учебное пособие для вузов. 2-е изд. М.: Химия, 2001, с.193-194, 362-377].

Недостатком указанного способа является невысокий отбор дистиллятных вакуумных фракций 350-500°С (25-30% в расчете на сырую нефть).

Известен способ перегонки жидкого продукта, включающий стадию вакуумной перегонки с использованием активной жидкой среды для повышения отбора дистиллятных продуктов путем циркуляции этой среды через струйный аппарат, холодильник и сепаратор [См. Патент РФ 95120267. 1997 год]. Известен способ переработки жидкого углеводородного сырья с распылением его в нагретую газовую среду с использованием газодинамических колебаний и водорода [См. Патент РФ №2087518. 1997 год].

Недостатком указанных способов является создание сложных контуров для циркуляции углеводородного сырья, применение специальных устройств для создания струйного эффекта, газодинамических колебаний, подачи водорода, дополнительное теплообменное оборудование и промежуточное охлаждение, использование водорода или веществ, разлагающихся с выделением водорода, а также недостаточно высокие выходы дистиллятных продуктов.

Наиболее близким по совокупности признаков к заявляемому способу является способ предварительной магнитной обработки остаточного нефтепродукта (мазута) постоянным магнитным полем с магнитной индукцией 0,1-0,4 Тл при скорости потока 0,001-0,05 м/с с дальнейшей перегонкой путем нагрева до кипения при давлении 0,01-15 кПа и вывода из зоны кипения образующихся паров параллельно зеркалу испарения вещества и дефлегмацией с последующей конденсацией. Способ предварительной магнитной обработки мазута постояннным магнитным полем с магнитной индукцией 0,1-0,4 Тл позволяет увеличить глубину отбора дистиллятных фракций на 2-10 об.% [См. Патент РФ 2230094. 2004 год].

Недостатком известного способа является неполный отбор от потенциала дистиллятных фракций.

Техническая задача - увеличение глубины отбора дистиллятных фракций от остаточных нефтепродуктов при вакуумной перегонке посредством комбинированной обработки остаточных нефтепродуктов магнитным полем и ультразвуком.

Технический результат - увеличение выхода дистиллятных фракций от остаточных нефтепродуктов при вакуумной перегонке до 12 мас.%.

Он достигается тем, что в известном способе перед ректификацией остаточный нефтепродукт нагревают до 35-250°С и подвергают воздействию ультразвука с основной частотой излучателя 5-80 кГц, а затем постоянным магнитным полем с магнитной индукцией 0,05-0,5 Тл при скорости потока 0,001-0,3 м/с. Линии напряженности постоянного магнитного поля направлены перпендикулярно вектору потока остаточного нефтепродукта, а ультразвуковой излучатель помещен внутрь емкости, через которую протекает нефтепродукт.

В результате обработки ультразвуком происходит частичное разрушение агломератов молекул (дисперсных частиц), преобразование дисперсного состояния остаточных нефтепродуктов, приводящее к уменьшению размера частиц дисперсной фазы нефтяной системы. А магнитное поле способствует упорядочению дисперсной фазы, содержащей свободные радикалы, в направлении вектора магнитного поля, фиксируя новую структуру нефтяной дисперсной системы. Вследствие этого гомогенность нефтяной системы возрастает, что приводит к интенсификации процессов тепло- и массообмена при перегонке и, следовательно, к увеличению выхода дистиллятных фракций.

Характеристики остаточного нефтепродукта (мазута), определены по стандартным методикам и приведены в таблице 1.

Предлагается способ перегонки остаточных нефтепродуктов путем нагрева до кипения при давлении 0,01-15 кПа, вывода из зоны кипения образующихся паров, их дефлегмации с последующей конденсацией, отличающийся тем, что перед нагреванием остаточные нефтепродукты подвергают воздействию ультразвука с основной частотой излучателя 7-80 кГц и магнитного поля с индукцией 0,05-0,5 Тл.

Результаты вакуумной перегонки остаточных нефтепродуктов представлены в таблице 2. Видно, что предварительная обработка ультразвуком позволяет увеличить выходы дистиллятных фракций на 3-4%, магнитным полем - на 6%. А совместная обработка ультразвуком и магнитным полем позволяет увеличить выход дистиллятных фракций до 12%. Причем наибольший эффект наблюдается для образца, обработанного ультразвуком, с основной частотой излучателя 40 кГц и магнитным полем с магнитной индукцией 0,15 Тл. Глубина отбора фракции, выкипающей до 330°С, увеличилась на 9 об.%, для фракции, выкипающей до 340°С, возросла на 10,9%, для фракции, выкипающей до 350°С, - на 12,0%, для фракции, выкипающей до 360°С, - на 10,5%, для фракции, выкипающей до 370°С, - на 6%, для фракции, выкипающей до 380°С, - на 3,2%. При равном отборе дистиллятных фракций температура процесса может быть снижена на 5-20°С в зависимости от режима обработки остаточного нефтепродукта.

Предлагаемый способ осуществляется следующим образом. Остаточные нефтепродукты нагревают до 35-200°С и направляют с помощью насоса сначала через ультразвуковое устройство, а потом через магнетизатор (устройство, создающее магнитное поле) при линейной скорости потока 0,001-0,3 м/с. После воздействия ультразвуком с основной частотой излучателя 7-80 кГц и магнитным полем с индукцией 0,05-0,7 Тл остаточный нефтепродукт направляют на вакуумную перегонку, где нагревают до температуры 40-350°С при остаточном давлении 0,01-15 кПа. Образующиеся пары конденсируются и собираются в мерной емкости.

Пример 1

Мазут нагревают до 35°С, после чего перегоняют при остаточном давлении 0,015 кПа. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 7,5; 11,1; 15,0 и 20,0; 29,0; 36,3; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 2

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц при линейной скорости потока 0,003 м/с и перегоняют при тех же условиях, что и в Примере 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 10,0; 15,0; 18,0 и 22,0; 29,0; 36,0; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 3

Мазут подвергают воздействию магнитного поля с индукцией 0,225 Тл и перегоняют по Примеру 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 9,0; 13,0; 18,5 и 26,0; 33,0; 39,0; 46,0; 52,0; 77,0; 86,0 об.%.

Пример 4 сравнительный

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц и магнитного поля с индукцией 0,225 Тл при линейной скорости потока 0,003 м/с и перегоняют при тех же условиях, что и в Примере 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 12,5; 17,7; 22,1 и 28,0; 33,4; 38,5; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 5 сравнительный

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц и магнитного поля с индукцией 0,15 Тл при линейной скорости потока 0,003 м/с и перегоняют при тех же условиях, что и в Примере 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 16,5; 22,0; 27,0 и 30,5; 35,0; 39,5; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 6 сравнительный

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц и магнитного поля с индукцией 0,11 Тл и перегоняют по Примеру 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 10,2; 15,0; 20,0 и 25,0; 30,0; 36,0; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 7 сравнительный

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц и магнитного поля с индукцией 0,1 Тл и перегоняют по Примеру 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 10,0; 13,2; 16,5 и 20,0; 30,0; 37,0; 44,0; 50,0; 75,0; 85,0 об.%.

Пример 8 сравнительный

Мазут подвергают воздействию ультразвука с основной частотой излучателя 40 кГц и магнитного поля с индукцией 0,08 Тл и перегоняют по Примеру 1. Выходы дистиллятных фракций, выкипающих до 330°С, до 340°С, до 350°С, до 360°С, до 370°С, до 380°С, до 390°С, до 400°С, до 450°С и до 500°С, составляют соответственно 10,0; 15,0; 18,5 и 22,0; 30,0; 36,0; 44,0; 50,0; 75,0; 85,0 об.%.

Таким образом, предлагаемый способ вакуумной перегонки остаточных нефтепродуктов позволяет увеличить глубину отбора дистиллятных фракций на 1-12 об.%. Комбинированное воздействие ультразвука и магнитного поля по предлагаемому способу осуществимо в промышленных условиях.

Таблица 1

Физико-химическая характеристика мазута
ПоказателиЗначения
Вязкость условная при 50°С4,409
Вязкость условная при 80°С1,969
Кинематическая вязкость при 50°С31,6
Кинематическая вязкость при 80°С11,1
Зольность, мас.%0,01
Массовая доля, %
- механических примесей0,01
- водыОтс.
- серы2,9
Содержание водорастворимых кислот и щелочейОтс.
Коксуемость, мас.%4
Содержание сероводородаОтс.
Температура вспышки (в открытом тигле), °С182
Температура застывания, °С+30
Плотность при 20°С, кг/м3926
Групповой состав: мас.%
- парафиновонафтеновые64,1
- ароматические16,8
- смолы14,2
- асфальтены4,9

Таблица 2

Результаты вакуумной перегонки остаточного нефтепродукта (мазута)
Выходы дистиллятов, об.%Номер примера
12345678
Без обработки магнитным полем и ультразвукомОбработка ультразвуком 40 кГцОбработка магнитным полем 0,225 Тл*Обработка магнитным полем 0,225 Тл и ультразвуком 40 кГцОбработка магнитным полем 0,15 Тл и ультразвуком 40 кГцОбработка магнитным полем 0,11 Тл и ультразвуком 40 кГцОбработка магнитным полем 0,1 Тл и ультразвуком 40 кГцОбработка магнитным полем 0,08 Тл и ультразвуком 40 кГц
до 330°С7,510,09,012,516,510,210,010,0
до 340°С11,115,013,017,722,015,013,215,0
до 350°С15,018,018,522,127,020,016,518,5
до 360°С20,022,026,028,030,525,020,022,0
до 370°С29,029,033,033,435,030,030,030,0
до 380°С36,336,039,038,539,536,037,036,0
до 390°С44,044,046,044,044,044,044,044,0
до 400°С50,050,052,050,050,050,050,050,0
до 450°С75,075,077,075,075,075,075,075,0
до 500°С85,085,086,085,085,085,085,085,0
* Пример 3 по прототипу.

1. Способ перегонки остаточных нефтепродуктов путем нагрева до кипения при давлении 0,01-15 кПа, вывода из зоны кипения образующихся паров, их дефлегмации с последующей конденсацией, отличающийся тем, что перед ректификацией остаточные нефтепродукты подвергают сначала воздействию ультразвука с частотой излучателя 7-80 кГц, а затем воздействию магнитного поля с индукцией 0,05-0,5 Тл.

2. Способ по п.1, отличающийся тем, что остаточный нефтепродукт перед воздействием ультразвука и магнитного поля нагревают до 35-250°С.

3. Способ по п.1, отличающийся тем, что линейная скорость потока изменяется в интервале от 0,001 до 0,3 м/с.



 

Похожие патенты:

Изобретение относится к процессам вакуумной перегонки, преимущественно нефтяного сырья, и может быть использовано в нефтеперерабатывающей промышленности для перегонки мазута в вакуумной ректификационной колонне.

Изобретение относится к области переработки углеводородного сырья, к устройствам для переработки кубовых остатков, гудронов, битумов, мазутов и т.д. .

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в промышленных процессах перегонки нефтяного сырья - мазута. .

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу и вариантам установок для осуществления способа перегонки нефтяного сырья для получения продуктов перегонки.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к получению бензина и моторных топлив с низкой температурой застывания путем прямой перегонки нефти в территориально удаленных районах.

Изобретение относится к нефтеперерабатывающей промышленности, и может быть использовано при перегонке мазута в вакууме. .

Изобретение относится к нефтепереработке, преимущественно к способам разделения углеводородов при стабилизации бензина или продуктов переработки синтез-газа. .

Изобретение относится к установкам для вакуумной перегонки нефтяного сырья, а более конкретно к установкам с малыми габаритами и может быть использовано в нефтеперерабатывающей промышленности для ректификации нефтяного сырья, в том числе мазута как в стационарных, так и в передвижных установках.

Изобретение относится к регенерации смазочных материалов, в частности к установкам для очистки и регенерации отработанных масел различного назначения. .

Изобретение относится к области химической технологии и может быть использовано для селективного нетермического управления активностью химических реагентов и, как следствие - скоростью химических реакций.

Изобретение относится к химической технологии, конкретно применительно к процессам получения хлора из хлористого водорода окислением последнего кислородом, и устройствам, обеспечивающим проведение процесса.

Изобретение относится к способу и установке, которые предназначены для обезвреживания и уничтожения различного рода высокотоксичных отходов, в частности таких, которые хранятся в контейнерах.

Изобретение относится к способу получения этиленненасыщенных галогенсодержащих алифатических углеводородов путем термического расщепления насыщенных галогенсодержащих алифатических углеводородов.

Изобретение относится к технологии переработки нефти и нефтепродуктов и может быть использовано на установках с атмосферными и вакуумными колоннами, предназначенными для фракционной перегонки нефти.

Изобретение относится к области ускорения процесса преобразования вещества созданием дополнительного, по отношению к основному, вспомогательного физического воздействия на вещество, помещенное в электропроводящий корпус для основного воздействия.

Изобретение относится к обработке фторуглеродного сырья. .

Изобретение относится к новому способу получения метанола и других алифатических спиртов путем газофазного взаимодействия углеводородных газов с водяным паром под действием ультрафиолетового излучения и может быть использовано в химической, нефтехимической, нефтеперерабатывающей и нефтегазодобывающей промышленности.

Изобретение относится к области получения нанодисперсных порошков (НДП) тугоплавких неорганических материалов и соединений, в частности к установкам и способам осуществления плазмохимических процессов получения НДП продуктов.
Изобретение относится к области производства, хранения и переработки сельскохозяйственного и природного сырья растительного и животного происхождения и предназначено для гидратации биополимерной массы при ее увлажнении, консервации и смешивании с водными растворами пищевых ингредиентов.
Наверх