Способ количественного определения атомов щелочного металла

Использование: для количественного определения атомов щелочного металла. Сущность: заключается в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, при этом образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, после чего определяют количество атомов щелочного металла методом гамма-спектрометрии. Технический результат: повышение чувствительности и ускорения процесса определения малого количества (менее 1 мкг) атомов щелочного металла. 2 з.п. ф-лы.

 

Изобретение относится к контрольно-измерительной технике и может использоваться при детектировании малого количества атомов щелочного металла (ЩМ), создании контролируемых источников паров (атомов) щелочных металлов, а также для контроля различных процессов в нанотехнологии.

Известны способы количественного определения сорбции атомов различных элементов твердым телом, например, а.с. СССР №928460, опубл. 15.05.82, в котором количество атомов, внедренных в образец, определяют по току ионизации.

Известны способы количественного определения сорбции атомов твердым телом, в том числе и атомов щелочного металла в системах графит - щелочной металл (А.Г.Каландаришвили. Источники рабочего тела для термоэмиссионных преобразователей энергии. М., Энергоатомиздат, 1993, с.180-203; а.с. СССР №1601562, опубл. 23.10.90).

В этих способах количество щелочного металла, сорбируемого графитом, определяют по изменению веса графита или изменению линейных размеров графитового образца.

Эти способы не позволяют измерять количество щелочного металла с точностью менее 1 мкг, кроме того, эти способы очень трудоемки, длительны по времени.

За прототип принят гравиметрический способ определения количества щелочного металла в пиролитическом ориентированном образце графита (А.Г.Каландаришвили. Источники рабочего тела для термоэмиссионных преобразователей энергии. М., Энергоатомиздат, 1993, с.195), заключающийся в том, что в вакуумной камере с установленным на пружинной подвеске образцом пиролитического графита весом 1-3 г проводят предварительное обезгаживание элементов конструкции вакуумной камеры при плавном повышении температуры камеры до 400°С и графита до 950°С при изменении вакуума от 1·10-3 Па до 1·10-5 Па. При достижении вакуума 1·10-5 Па в камеру подают пары ЩМ, например, давление паров цезия устанавливают от 1·102 Па до 3·102 Па, а температура графита в этом случае поддерживается в диапазоне 300-900°С. Процесс насыщения пиролитического графита ЩМ контролируют по удлинению пружинной подвески, для этого режим насыщения выбирают так, чтобы процесс заполнения графита протекал медленно, а затем содержание щелочного металла в системе графит - ЩМ определяют по градуировочным кривым.

Современные технологии, особенно нанотехнологии, требуют точного и быстрого определения малых количеств веществ (менее 1 мкг или эквивалентного монослойному покрытию 1 см2), чего не обеспечивает данный способ, поскольку для каждого вещества нужно свое калибровочное измерение, для детектирования малых количеств атомов - при малых потоках, например, при давлениях паров цезия 10-3-10-7 Па для накопления 1 мкг потребуется несколько недель непрерывной работы.

Техническим результатом, на который направлено изобретение, является повышение чувствительности и ускорения процесса определения малого количества (менее 1 мкг) атомов щелочного металла.

Для этого предложен способ количественного определения атомов щелочного металла, заключающийся в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары щелочного металла и выдерживают образец при повышенной температуре, после чего образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, и определяют количество атомов щелочного металла методом гамма-спектрометрии.

При этом величину нейтронного потока выбирают в диапазоне 1012-1013 нейтрон/см2·с.

Пары атомов щелочного металла подают при давлении ниже 10-5 Па.

Данный способ основан на том, что гамма-спектрометрическим методом можно определять очень малые количества - до 10-12 г, атомов, являющихся гамма-излучателями. Для этого переводят атомы, сервированные в графит, в изотопы-гамма-излучатели путем облучения их нейтронным потоком, например, в ядерном реакторе. Также этим способом можно определить количество атомов паров бария (группа щелочно-земельных металлов). От величины нейтронного потока зависит время активации сервированных атомов, чем больше величина потока, тем меньше время облучения, на практике величина потока нейтронов должна быть не ниже 1012-10-13 нейтрон/см2·с.

Это позволяет при медленно протекающих процессах - низких давлениях паров ЩМ (например, при давлении ˜10-7 Па) контролировать насыщение образца на уровне менее 10-8 г, при этом время выдержки образца в вакуумной камере будет составлять порядка 30-40 минут (эта величина будет зависеть от потока атомов конкретного ЩМ). Этот способ можно использовать и при определении любого количества атомов, но наиболее заметные преимущества способа проявляются при определении малых количеств атомов.

Способ осуществляется следующим образом на примере цезия.

В вакуумную камеру помещают образец пиролитического графита весом 1-3 грамма. Затем все элементы конструкции вакуумной камеры обезгаживают при температуре ˜400°С, а образец графита - при 950°С в течение 2-4 часов. Вакуум во время обезгаживания плавно повышают от 1·10-3 Па до 1·10-5 Па. По окончании процесса обезгаживания температуру вакуумной камеры устанавливают на 30-50°С выше температуры источника пара цезия, а температуру пирографита варьируют в диапазоне 300-900°С. Затем подают пары цезия в вакуумную камеру.

При указанном давлении выдерживают образец в течение не менее 30 минут. По окончании процесса насыщения пирографита парами цезия образец переносят в другой объем (например, ядерный реактор), где облучают нейтронным потоком 1012-1013 нейтрон/см2·с. Время облучения зависит от предполагаемого количества атомов и его нейтронно-физических свойств, например, используя известное выражение скорости накопления радиоактивного изотопа, расчетное время для активации 1·10-8 граммов цезия Cs133 в Cs134 потоком 1012 нейтрон/см2·с требуется около 24 часов. После нейтронного облучения образец пиролитического графита с сорбированным и активированным веществом помещают в гамма-спектрометр, где по активности изотопа Cs134 определяют количество атомов вещества.

Таким образом, данный способ позволит детектировать малые количества веществ с высокой чувствительностью при снижении времени и трудоемкости измерений.

1. Способ количественного определения атомов щелочного металла, заключающийся в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, отличающийся тем, что образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, после чего определяют количество атомов щелочного металла методом гамма-спектрометрии.

2. Способ по п.1, отличающийся тем, что величину нейтронного потока выбирают в диапазоне 1012-1013 нейтрон/см2 с.

3. Способ по п.1, отличающийся тем, что подают пары атомов щелочного металла при давлении ниже 10-5 Па.



 

Похожие патенты:

Изобретение относится к исследованию внутренней структуры объектов, а именно к анализу объектов радиационными методами, например с помощью нейтронного, рентгеновского или гамма-излучения.

Изобретение относится к методам исследования внутренней структуры объектов, а именно к анализу объектов радиационными методами, например с помощью нейтронного, рентгеновского или гамма-излучения.

Изобретение относится к области неразрушающего контроля материалов и изделий радиационными методами и может быть использовано для их дефектоскопии в производственных и полевых условиях, а также для обнаружения опасных материалов на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к исследованию внутренней структуры объектов, а именно к анализу объектов радиационными методами, например с помощью нейтронного, рентгеновского или гамма-излучения.

Изобретение относится к исследованию внутренней структуры объектов, а именно к анализу объектов радиационными методами, например с помощью нейтронного, рентгеновского или гамма-излучения.

Изобретение относится к области анализа материалов с использованием облучения их различными видами излучений, в частности рентгеновским, нейтронным и электромагнитным излучением, вызывающим ядерный квадрупольный резонанс, и преимущественно может быть использовано для обнаружения взрывчатых веществ в контролируемых предметах без вскрытия последних

Изобретение относится к ядерным методам интроскопии, конкретно к технике обнаружения и идентификации скрытых опасных предметов в крупногабаритных средствах транспортировки (большегрузные контейнеры, автомобили и т.д.) с помощью нейтронных полей, генерируемых в ускорителях заряженных частиц

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов, в частности, для неразрушающего дистанционного контроля различных скрытых веществ

Изобретение относится к радиографии, а именно к получению изображений с помощью нейтронного, рентгеновского и гамма-излучений, к детектированию ядерных излучений, к области неразрушающего контроля материалов и изделий радиационными методами, и может быть использовано для обнаружения опасных материалов на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах, в неразрушающем контроле в атомной энергетике, машиностроении, строительстве и других отраслях радиографическими и томографическими методами

Изобретение относится к измерительной технике, в частности к устройствам для элементного (и изотопного) анализа поверхности вещества, тонких пленок, наноструктур

Изобретение относится к области исследования или анализа материалов радиационными методами с измерением вторичной эмиссии гамма-квантов с использованием нейтронов, в частности для неразрушающего дистанционного контроля различных скрытых веществ

Изобретение относится к области обнаружения скрытых взрывчатых веществ (ВВ) и наркотических средств (НС) методом фотоядерного детектирования и может быть использовано в стационарных и подвижных установках при, например, досмотре багажа авиапассажиров, таможенном досмотре или разминировании территорий в рамках гуманитарных акций

Изобретение относится к области обнаружения скрытых взрывчатых веществ (ВВ) и наркотических средств (НС) методом фотоядерного детектирования и может быть использовано в стационарных и подвижных установках, например, при досмотре багажа авиапассажиров, таможенном досмотре или разминировании территорий в рамках гуманитарных акций
Наверх