Способ извлечения галлия из металлических отходов электролитического рафинирования алюминия

Изобретение относится к извлечению галлия из металлических отходов электролитического рафинирования алюминия, например, таких как анодный осадок и/или аналогичный ему по составу отработанный анодный сплав. Способ извлечения галлия включает измельчение отходов и обработку щелочным раствором для выщелачивания галлия. При этом в качестве щелочного раствора используют раствор едкого натра, содержащий галлий с концентрацией не менее 0,15 г/л. Техническим результатом изобретения является ускорение процесса и сокращение времени технологического процесса в 1,5-2 раза. 1 табл.

 

Изобретение относится к области металлургии редких металлов, в частности к получению галлия из металлических отходов, например анодного осадка и/или аналогичного ему по составу отработанного анодного сплава процесса электролитического рафинирования алюминия.

Известен способ извлечения галлия из анодных осадков при производстве алюминия (Иванова Р.В. Химия и технология галлия. - М.: Металлургия, 1973, с.306-307), который заключается в обработке измельченного материала горячим раствором едкого натра. При этом извлечение галлия в раствор составляло 50-60%. Для повышения перевода галлия в раствор недовыщелоченный осадок дополнительно обжигался в окислительной атмосфере при температуре 650-700°С в течение 10 часов и повторно выщелачивался. Извлечение галлия в жидкую фазу повышалось до 95-97%. Однако положительный результат был достигнут путем существенного усложнения технологической схемы и увеличения продолжительности процессов.

Наиболее близким к заявляемому техническому решению (прототипом) является способ извлечения галлия из анодных осадков при производстве алюминия (Патент РФ №2064518, МПК С22В 58/00, С01G 15/00, заявл. 27.01.1992, опубл. 27.07.1996), который предусматривает выщелачивание галлия из анодного осадка щелочным раствором при температуре 100°С и давлении 1,5-4,5 атм. с подачей воздуха со скоростью 240-280 л/ч. Извлечение галлия в раствор составляет 92-98%. Недостатком прототипа является большая продолжительность процесса, не менее 2,5 часов.

Задачей изобретения является ускорение процесса извлечения галлия из анодного осадка и отработанного анодного сплава, являющихся отходами электролитического рафинирования алюминия, что позволит в 1,5-2 раза сократить время производственного процесса.

Технический результат достигается тем, что в способе извлечения галлия из металлических отходов электролитического рафинирования алюминия, включающем измельчение и обработку щелочным раствором, в качестве щелочного раствора используют раствор едкого натра, содержащий галлий, с концентрацией галлия не менее 0,15 г/л.

Сущность способа заключается в следующем.

Основной реакцией при щелочной обработке сплава на основе алюминия является образование алюмината натрия:

Al+NaOH+H2O=NaAlO2+3/2H2↑.

Аналогичным образом выщелачивается галлий, являющийся в данном случае целевым микрокомпонентом:

Ga+NaOH+H2O=NaGaO2+3/2H2↑.

Следует отметить, что анодный осадок и отработанный анодный сплав процесса электролитического рафинирования алюминия обладают выраженной мелкокристаллической структурой, состоящей из зерен металлических растворов и интерметаллидов, в которых основным компонентом является алюминий.

По мере накопления галлия в растворе все более вероятной становится реакция электрохимической цементации галлия алюминием, представленным недорастворенными частицами сплава:

4Al+2NaOH+2NaGaO2+2H2O=4NaAlO2+2Ga+3H2↑.

Восстановленный металлический галлий с поверхности частиц проникает по межкристаллитным граням внутрь. Такое проникновение способствует охрупчиванию и измельчению материала и, как следствие, увеличению поверхности взаимодействия и интенсификации процесса выщелачивания. Это свойство галлия аналогично известной способности ртути разрушать металлы путем эрозии. Однако эффект заметен только при концентрации галлия в растворе не менее 0,15 г/л. Для того чтобы получить такую концентрацию, используя для обработки анодного осадка исходный щелочной, не содержащий галлия раствор, требуется обычно не менее 0,5 часа. В это время процесс идет практически без увеличения поверхности взаимодействия и становится заведомо более продолжительным.

При гидрохимической обработке анодного сплава щелочным галлийсодержащим раствором уже в начальный момент времени галлий, содержащийся в растворе, восстанавливается на поверхности частиц в виде жидкой (при температуре более 29,75°С, т.е. выше точки плавления галлия) металлической пленки, которая обеспечивает эрозию материала путем разрушения кристаллитов. Таким образом, достигается экономия времени, затрачиваемого на образование галлатного раствора достаточной концентрации для запуска механизма эрозии.

На практике нет необходимости специального предварительного приготовления галлатного раствора для выщелачивания, поскольку достаточно направить в оборот часть раствора после гидрохимической обработки, который уже содержит выщелоченный галлий. Такой прием не усложняет технологию, но ускоряет ее.

Примеры осуществления способа

Пример 1. Измельченный до размера частиц не более 3 мм анодный осадок, содержавший, %: Al 38,4; Cu 48,5; Si 8,1; Fe 3,0; Ga 0,27, подвергали гидрохимической обработке производственным щелочным галлийсодержащим раствором с концентрацией основных компонентов, г/л: Na2Oобщ 236,5; Na2Oку 210,2; Al2О3 62,5; Ga. 0,6 в стальном реакторе с мешалкой при температуре 90°С. Объем исходного раствора составлял 1 л, масса анодного осадка - 600 г. Процесс считали законченным в момент исчезновения пены на поверхности раствора, т.е. с окончанием выделения газообразного водорода, поскольку установлено, что дальнейшая гидрохимическая обработка не приводит к заметному увеличению содержания галлия в растворе. Определенное таким образом время выщелачиваия галлия из анодного осадка составило 2 ч 05 мин.

Пример 2. Тот же самый анодный осадок выщелачивали в условиях примера 1 20-процентным каустическим раствором, приготовленным путем растворения едкого натра марки «технический» в воде, в который предварительно ввели оксид галлия до содержания растворенного Ga 0,15 г/л. Время выщелачивания составило 2 ч 30 мин.

Пример 3. Тот же самый анодный осадок выщелачивали так же, как в примере 2, но содержание галлия в исходном каустическом растворе, предварительно довели до 0,6 г/л. Время выщелачивания составило 1 ч 40 мин.

Пример 4. Тот же самый анодный осадок выщелачивали так же, как в примере 2, но содержание галлия в исходном каустическом растворе предварительно довели до 8,0 г/л. Время выщелачивания составило 1 ч 15 мин.

Пример 5. Тот же самый анодный осадок выщелачивали так же, как в примере 2, но содержание галлия в исходном каустическом растворе предварительно довели до 15,0 г/л. Время выщелачивания составило 55 мин.

Пример 6. Для сравнения был проведен опыт по прототипу. Тот же самый анодный осадок выщелачивали так же, как в примерах 2-4, в том же 20-процентном растворе NaOH, но не содержащем галлия. Время выщелачивания составило 2 ч 35 мин.

Пример 7. Для сравнения был проведен опыт на запредельное значение по концентрации галлия в исходном щелочном растворе (меньше минимально заявляемого). Тот же самый анодный осадок выщелачивали так же, как в примерах 3-5, в том же 20-процентном растворе NaOH, но содержащем галлия всего лишь 0,1 г/л. Время выщелачивания составило 2 ч 35 мин, т.е. столько же, сколько в прототипе.

Для удобства сопоставления результатов ключевые данные по всем примерам сведены в таблицу, из которой следует, что во всех случаях выщелачивание анодного осадка галлийсодержащим раствором проходит быстрее, чем просто каустическим (по прототипу). Влияние содержания галлия в исходном растворе хорошо иллюстрируется опытами 2-7, которые проводились в полностью сопоставимых условиях.

Очевидно, что положительное влияние предварительно введенного в раствор галлия сказывается уже при концентрации Ga 0,15 г/л. Повышение содержания галлия ускоряет процесс, но свыше 8 г/л это влияние не так заметно, поскольку количества жидкого металла на поверхности частиц анодного сплава уже в первые минуты вполне достаточно для эффективного проникновения внутрь зерен по межкристаллитным граням.

В примере 1 условия проведения выщелачивания наиболее близки к реальным производственным. Несмотря на то, что исходный раствор содержал значительное количество оксида алюминия и в качестве растворителя уступал чисто каустическому раствору, использованному в прототипе, изначальное присутствие в жидкой фазе галлия существенно сократило продолжительность выщелачивания.

Способ позволяет более чем вдвое ускорить процесс выщелачивания галлия из анодного осадка (анодного сплава) по сравнению с прототипом (примеры 4 и 5).

Таблица
ПримерСпособКонцентрация галлия в исходном растворе, г/лВремя выщелачивания,
1предлагаемый0,62 ч 05 мин
20,152 ч 30 мин
30,61 ч 40 мин
48,01 ч 05 мин
515,055 мин
6по прототипу02 ч 35 мин
7пример на запредельное значение0,12 ч 35 мин

Способ извлечения галлия из металлических отходов электролитического рафинирования алюминия, включающий измельчение и обработку щелочным раствором для выщелачивания галлия, отличающийся тем, что в качестве щелочного раствора используют раствор едкого натра, содержащий галлий с концентрацией не менее 0,15 г/л.



 

Похожие патенты:
Изобретение относится к области химической технологии и может быть использовано для переработки отходов кашированной алюминиевой фольги. .

Изобретение относится к черной металлургии, в частности к подготовке отходов обжига флюсующих составляющих для подачи в металлургическую шихту путем производства железосодержащих шлакообразующих брикетов, используемых как заменитель извести при производстве чугуна и стали.
Изобретение относится к цветной металлургии, а более конкретно к способам приготовления металлургической шихты для плавки цветных металлов. .
Изобретение относится к области металлургии и может быть использовано при переработке железоцинксодержащих материалов вельцеванием. .

Изобретение относится к способу серно-кислотного выщелачивания металлической меди. .
Изобретение относится к области электрохимических производств и является способом переработки свинцовых пластин с активной массой отработанных аккумуляторов. .

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической и угольной промышленности.

Изобретение относится к переработке отходов, а именно к способу переработки стружки особочистых алюминиевых сплавов. .
Изобретение относится к металлургии, а именно к способам переработки промышленных отходов. .

Изобретение относится к сухой переработке электронного и кабельного скрапа и может быть наиболее широко использовано для переработки радиоэлектронного лома и игровых автоматов с извлечением из них металлов и сортировкой пластмасс.

Изобретение относится к устройствам для выделения галлия из растворов электрохимическим восстановлением на жидком металле или сплаве. .

Изобретение относится к металлургии редких металлов, в частности к способу извлечения галлия из растворов. .
Изобретение относится к способам переработки угля путем извлечения металлосодержащих соединений и получения из угля жидкого топлива путем его каталитической гидрогенезации с последующими регенерацией катализатора и извлечением редких рассеянных элементов, содержащихся в исходных углях.
Изобретение относится к области металлургии редких металлов, в частности к получению галлия из отходов процесса электролитического рафинирования алюминия, таких как анодные осадки и аналогичный им по составу отработанный анодный сплав.

Изобретение относится к цветной металлургии, в частности к способу рафинирования галлия. .

Изобретение относится к устройствам для плавления и дозированного розлива легкоплавких металлов. .
Изобретение относится к металлургии редких металлов, в частности к способам извлечения галлия, и может быть использовано при переработке металлизированного материала, содержащего галлий и алюминий.
Изобретение относится к технологии производства редких и рассеянных элементов и может быть использовано для экстракционного извлечения и разделения галлия и индия из кислых сульфатных растворов сложного состава.

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении индия высокой чистоты полупроводникового сорта. .
Изобретение относится к гидрометаллургии и может быть использовано для извлечения, очистки и концентрирования индия при переработке растворов выщелачивания индийсодержащих отходов и концентратов, например из цинковых сульфатных растворов.
Изобретение относится к металлургии редких металлов, а именно к технологии переработки титан-кремнийсодержащих концентратов Ярегского месторождения, и может быть использовано для получения искусственного рутила - чистого диоксида титана.
Наверх