Способ определения эффекта "дискриминации" изотопного состава вещества в узлах многоколлекторного масс-спектрометра

Изобретение относится к области электротехники, в частности к аналитическому оборудованию, а именно к разработке изотопных многоколлекторных масс-спектрометров, используемых для определения изотопного состава различных газообразных веществ. Способ заключается в изменении условий прохождения вещества в исследуемом узле, сохраняя постоянными условия прохождения в остальных узлах масс-спектрометра, при этом наличие и величину эффекта "дискриминации" изотопного состава вещества в исследуемом узле определяют по изменению значения атомной доли одного из изотопов анализируемого вещества. В качестве исследуемых узлов масс-спектрометра могут быть выбраны следующие: дозирующий клапан в системе подготовки и ввода пробы; источник ионов; диспергирующий масс-анализатор; приемник ионов и другие. Реализация способа возможна на любом масс-спектрометре, оборудованном многоколлекторной системой регистрации ионов. Изобретение позволяет выявить и количественно определить величину эффектов "дискриминации" изотопного состава вещества с целью создания масс-спектрометрической аппаратуры с более высокими аналитическими и техническими характеристиками, что является техническим результатом изобретения. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к аналитическому оборудованию, а именно к разработке изотопных многоколлекторных масс-спектрометров, используемых для определения изотопного состава различных газообразных веществ. Такие приборы находят широкое применение в различных областях химической промышленности и геологии.

Существует набор стандартных аналитических параметров масс-спектрометров, которые характеризуют масс-спектрометр и улучшению которых уделяют повышенное внимание. К таким параметрам изотопного масс-спектрометра относятся [А.А.Сысоев, В.Б.Артаев, В.В.Кащеев. Изотопная масс-спектрометрия. - М.: Энергоатомиздат, 1993. - 288 с.]: разрешение; изотопическая чувствительность (предел обнаружения); дисперсия по массам; величина эффекта "памяти"; стандартное отклонение результатов измерений и др. Известны общепринятые методы определения величины вышеперечисленных параметров, которые в большинстве своем определяются с помощью стандартных образцов изотопного состава анализируемых веществ (СО), вводимых в масс-спектрометр.

Однако указанные параметры не позволяют как разработчикам, так и пользователям масс-спектрометров получать информацию об эффектах "дискриминации" (изменения изотопного состава вещества), происходящих в различных узлах масс-спектрометра по мере поступления вещества из баллона (отборника) до приемника ионов. Такие эффекты в той или иной степени существуют во всех современных масс-спектрометрах и часто являются ограничением их аналитических возможностей и следствием использования только относительных методов измерений, при которых вместе с анализируемой пробой в масс-спектрометр необходимо параллельно вводить СО.

На фиг.1 приведена известная принципиальная схема прохождения вещества в масс-спектрометре, в которой при проведении масс-спектрометрических измерений проба (или СО), находящаяся в баллоне системы подготовки и ввода проб, последовательно проходит следующие узлы масс-спектрометра: дозирующий клапан, источник ионов с системой коллимирующих и корректирующих линз; диспергирующий магнит; приемник ионов.

В каждом из этих узлов в результате различных физических процессов возможно изменение изотопного состава вещества, вследствие чего относительная величина зарегистрированных выходных сигналов не будет соответствовать начальному изотопному составу вещества, находящегося в баллоне.

Известно [А.А.Сысоев, В.Б.Артаев, В.В.Кащеев. Изотопная масс-спектрометрия. - М.: Энергоатомиздат, 1993. - 288 с.], что эффект "дискриминации" изотопного состава вещества в масс-спектрометре в целом можно определить осуществляя ввод стандартного образца (СО) изотопного состава вещества и определяя изотопный состав по формуле:

где Ki - коэффициент относительной калибровки канала регистрации i-го изотопа;

Ui - величина выходного сигнала или ионного тока, при регистрации i-го изотопа, В (А).

Величина коэффициентов относительной калибровки Ki определяется предварительно перед измерениями изотопного состава вещества путем подачи на каждый коллектор постоянного ионного луча или опорного тока от постоянного источника.

Отличие полученного значения атомной доли i-го изотопа вещества от паспортного значения и будет характеризовать эффект "дискриминации" изотопного состава в масс-спектрометре в целом. Однако для устранения данного эффекта, снижающего аналитические возможности масс-спектрометрической аппаратуры, необходимо знать, величину "дискриминации" каждого узла масс-спектрометра.

Задача изобретения состоит в том, чтобы создать такой способ диагностики масс-спектрометра, который позволял бы определять наличие и величину эффекта "дискриминации" изотопного состава вещества в любом из узлов масс-спектрометра.

Поставленная задача достигается тем, что в известном методе определения наличия эффекта "дискриминации" изотопного состава вещества во всем масс-спектрометре, включающем определение коэффициентов калибровки каналов регистрации ионных токов, ввод вещества в масс-спектрометр с одновременной регистрацией ионных токов каждого изотопа вещества на отдельном коллекторе и расчет атомной доли i-го изотопа по формуле (1), в исследуемом узле изменяют условия прохождения вещества, сохраняя постоянными условия прохождения в других узлах масс-спектрометра, и по зафиксированному изменению величины атомной доли i-го изотопа (Сi) определяют величину эффекта "дискриминации" изотопов вещества в данном исследуемом узле масс-спектрометра.

Значение атомной доли i-го изотопа (Сi), определенное по формуле (1), зависит как от точности относительных коэффициентов калибровки Ki, так и от целого ряда параметров, характеризующих прохождение вещества от баллона до приемника ионов, и влияющих на соответствие величины регистрируемого сигнала Ui начальному содержанию изотопа. В общем случае Сi можно представить как функцию, зависящую от следующих параметров:

где Ki, Ki - коэффициенты калибровки каналов регистрации i-го и j-го изотопов вещества;

С0,i - начальное (в баллоне) содержание i-го изотопа вещества;

Р - давление газа в системе ввода пробы масс-спектрометра;

t - время измерений;

γ1, γ2, γn - коэффициенты "дискриминации" i-го изотопа в 1-ом, 2-ом и n-ом узле масс-спектрометра.

n - количество узлов масс-спектрометра, в которых может происходить изменение изотопного состава вещества.

В свою очередь величины γn зависят от параметров, характеризующих каждый узел масс-спектрометра. Так, например, коэффициент пропускания i-го изотопа вещества через дозирующий клапан (γ1) будет зависеть от режима течения вещества в дозирующем клапане, т.е. от величины давления вещества перед клапаном и характерного размера канала клапана.

В таблице приведен перечень возможных варьируемых параметров для каждого из узлов изотопного многоколлекторного масс-спектрометра.

Узел масс-спектрометраВозможные варьируемые условия (параметры)
Система подготовки и ввода пробы- Давление газа перед дозирующим клапаном; - Характерные размеры канала дозирующего клапана;

- Изотопный состав анализируемого газа;
Источник ионов (ионизация электронным ударом)- Давление газа в области ионизации;

- Напряженность фокусирующего магнитного поля;

- Величина потока и энергии электронного пучка;

- Величина ионного тока анализируемого вещества;

- Размер щели коллимирующей линзы;

- Величина потенциалов электродов источника ионов;
Система корректирующих и коллимирующих линз- Размеры щелей корректирующих и коллимирующих линз;

- Величины потенциалов на линзах;

- Величина ионного тока анализируемого вещества;
Диспергирующий магнит- Величина зазора анализатора в диспергирующем магнитном поле;

- Формы входной и выходной границ магнитного поля;

- Напряженность магнитного поля;

- Величина ионного тока анализируемого вещества;
Приемник ионов- Размеры входных диафрагм;

- Величина антидинатронного потенциала;

- Характерные размеры коллекторов;

- Величина ионного тока анализируемого вещества.

Таким образом, задача определения величины эффекта "дискриминации" изотопного состава вещества в n-ом узле изотопного многоколлекторного масс-спектрометра решается выполнением следующих действий:

1. Определяют коэффициенты относительной калибровки каналов регистрации ионных токов (Ki);

2. Вводят анализируемое вещество в масс-спектрометр, регистрируя каждый изотоп вещества на отдельном коллекторе;

3. Выбирают в качестве индикатора i-ый изотоп вещества, содержание которого рассчитывают по формуле (1);

4. Изменяют условия прохождения вещества через n-ый узел масс-спектрометра, сохраняя постоянными условия прохождения в остальных узлах, и наблюдают за изменением величины Сi.

Осуществление заявляемого способа можно продемонстрировать на примере диагностики масс-спектрометра МТИ-350Г (г. Новоуральск, Россия), предназначенного для определения изотопного состава гексафторида урана (ГФУ). Проводилось определение величины эффекта "дискриминации" изотопов урана на дозирующем клапане игольчатого типа, расположенном в системе подготовки и ввода проб. Данный клапан обеспечивает поступление анализируемого газа в источник ионов с требуемым расходом. Номинальный расход ГФУ составляет около 1 мг/час, давление ГФУ до и после клапана составляют ˜100 и ˜10-3 мм рт.ст. соответственно.

В качестве индикатора наблюдали за измеренным значением содержания урана-235 в стандартном образце изотопного состава урана, паспортное значение атомной доли данного изотопа урана в котором составляло (5,3797±0,0025)%. Условия прохождения ГФУ через дозирующий клапан изменяли путем уменьшения давления ГФУ перед клапаном и открытием клапана для восстановления прежней интенсивности аналитического сигнала с целью сохранения постоянными условия прохождения вещества в следующих узлах масс-спектрометра. Величина выходного сигнала иона 238UP5+ поддерживалась равной ˜5·10-9 А.

Таким образом, выражение (2) в данном случае может быть представлено в виде:

где Р - давление ГФУ перед дозирующим клапаном;

d - характерный размер канала клапана.

На фиг.2 представлена полученная зависимость содержания урана-235, определяемого по формуле (1), от давления ГФУ перед дозирующим клапаном, которая демонстрирует непрерывное увеличение измеренного значения содержания урана-235 при уменьшении давления ГФУ, что свидетельствует об увеличении величины эффекта "дискриминации" вследствие приближения длины свободного пробега молекул ГФУ к характерному размеру канала дозирующего клапана. При изменении давления на 100 мм рт.ст. максимальное изменение атомной доли урана-235 составило ˜0,010%.

Максимально возможное разделения изотопов в случае реализации молекулярного режима течения составит:

Таким образом, полученная зависимость, с одной стороны, доказывает наличие эффекта "дискриминации" в дозирующем клапане, с другой - свидетельствуют о реализации в клапане масс-спектрометра молекулярно-вязкостного режима течения газа, т.к. в случае молекулярного режима течения газа изменение содержания урана-235 составляло до 0,023%.

После доработки конструкции данного игольчатого клапана, направленной на создание более вязкого режима течения ГФУ, была повторно снята зависимость С235=f(P), представленная на фиг.3. Полученные результаты указывают на существенное уменьшение эффекта разделения изотопов. Максимально зафиксированная величина ΔС235 составила ˜0,002%, что свидетельствует о реализации более вязкого режима течения ГФУ. При этом изменение величины давления перед иглой от 40 до 100 мм рт.ст. не приводит к какому-либо заметному изменению содержания урана-235.

Таким образом, приведенный пример подтверждает возможность применения указанного способа диагностики масс-спектрометра и позволяет выявить наличие и величину эффекта "дискриминации" изотопного состава анализируемого вещества в дозирующем клапане масс-спектрометра, на этом основании оптимизировать его конструкцию и тем самым существенно уменьшить эффект разделения изотопов урана в данном узле масс-спектрометра.

Изобретение повышает эффективность и качество разрабатываемого масс-спектрометрического оборудования и способствует повышению уровня его конкурентоспособности.

1. Способ определения эффекта "дискриминации" изотопного состава вещества в узлах многоколлекторного масс-спектрометра, включающий предварительное определение коэффициентов калибровки каналов регистрации ионных токов (Ki), ввод стандартного образца изотопного состава вещества в масс-спектрометр, одновременную регистрацию ионных токов каждого изотопа вещества (Ui) на отдельном коллекторе и расчет атомной доли i-го изотопа вещества по формуле

где n - регистрируемые изотопы вещества,

отличающийся тем, что в исследуемом узле масс-спектрометра перебором параметров узла меняют условия прохождения вещества через узел, сохраняя постоянными условия прохождения вещества в остальных узлах масс-спектрометра, при этом величину эффекта "дискриминации" изотопного состава вещества в данном узле определяют по изменению величины атомной доли i-го изотопа вещества (Сi).

2. Способ по п.1, отличающийся тем, что при определении величины эффекта "дискриминации" в дозирующем клапане системы подготовки и ввода пробы масс-спектрометра в качестве изменяемых параметров прохождения вещества выбирают величину давления газа перед дозирующим клапаном и степень открытия клапана.

3. Способ по п.1 или 2, отличающийся тем, что в качестве анализируемого вещества используют гексафторид урана, а в качестве индикатора используют атомную долю урана-235.



 

Похожие патенты:

Изобретение относится к физическим методам анализа состава и структуры вещества, а именно к применению метода вторично-ионной масс-спектрометрии для анализа структурно-энергетического состояния поверхностного слоя вещества, и может быть использовано в структурообразовании и повышении износостойкости новых материалов при изготовлении деталей ответственного назначения.

Изобретение относится к области аналитического приборостроения, а конкретно к спектрометрам дрейфовой подвижности для обнаружения паров органических веществ в составе воздуха.

Изобретение относится к области аналитического приборостроения, а более конкретно к дрейф-спектрометрам для обнаружения паров органических веществ в составе воздуха.

Изобретение относится к поверхностно-ионизационным источникам ионов органических соединений, применяемым, например, в дрейф-спектрометрах или иных аналитических устройствах.

Изобретение относится к области аналитического приборостроения, а более конкретно к спектрометрам дрейфовой ионной подвижности, предназначенным для обнаружения следовых количеств паров органических веществ в составе воздуха, в частности паров органических молекул из класса взрывчатых, наркотических и физиологически активных веществ.

Изобретение относится к области аналитического приборостроения для целей газового анализа, а более конкретно к способам контроля состояния спектрометров ионной подвижности с поверхностно-ионизационным термоэмиттером ионов, в частности к способам калибровки спектрометров, включая контроль состояния геометрических характеристик спектрометров, наличие посторонних загрязнений на поверхности электродов спектрометров, приводящих к ухудшению аналитических характеристик спектрометров.

Изобретение относится к аналитическому приборостроению, а именно к многоколлекторным магнитным масс-спектрометрам, предназначенным для качественного и количественного анализа примесей в матрицах сложного состава, в частности в качестве детектора газового хроматографа с высокоэффективными капиллярными колонками.

Изобретение относится к электрофизике, в частности к системам, служащим для разделения изотопов, например для разделения тяжелых изотопов (атомная масса А>>1). .

Изобретение относится к области электротехники, в частности к контрольно-измерительной технике, а именно к многоколлекторным масс-спектрометрам, и может быть использовано в различных отраслях химической промышленности для определения изотопного состава веществ, в частности, на предприятиях ядерно-топливного цикла - для определения изотопного состава гексафторида урана (ГФУ)

Изобретение относится к аналитическому приборостроению, а именно к статическим приборам и устройствам для анализа масс-спектрального состава веществ

Изобретение относится к аналитической химии, а именно к способам определения изотопного состава вещества, предназначенным для анализа изотопного состава примесей в матрицах сложного состава, в частности для изотопного анализа метана в полевых условиях в воздухе, воде, грунте, снеге и бурильном растворе

Заявленное изобретение относится к трубке для измерения подвижности ионов. Заявленное устройство содержит камеру источника ионизации с центральным отверстием, впускной элемент для ионов, блок зоны дрейфа ионов с центральной камерой трубки, экранирующую сетку и диск Фарадея, причем камеру источника ионизации, впускной элемент для ионов, блок зоны дрейфа ионов, экранирующую сетку и диск Фарадея последовательно составляют вместе в направлении спереди назад. При этом блок зоны дрейфа ионов содержит первый изолятор и первые металлические пластины электродов, концентрично прикрепленные к передней и к задней поверхностям первого изолятора. Блок зоны дрейфа ионов содержит первый изолятор и первые металлические пластины электродов, которые вместе составляют одно целое. Техническим результатом является возможность упрощения конструкции трубки для измерения подвижности ионов и облегчение сборки и разборки трубки. 25 з.п. ф-лы, 19 ил.

Изобретение относится к области масс-спектрометрии высокого разрешения. Технический результат - улучшение масс-габаритных и эксплуатационных характеристик масс-спектрометров с преобразованием Фурье путем повышения давления в измерительных ячейках. Способ обеспечивает n-кратное сокращение длительности циклов масс-анализа с преобразованием Фурье и их периодическое с периодом T=Ta/n повторение в течение времени анализа Та. Сокращение в n раз длительности циклов позволяет в такое же число раз увеличивать давление в измерительных ячейках без изменения соотношения между сохранившимися и выбывшими при столкновениях ионами. Требуемое разрешение анализатора, определяемое временем Ta, обеспечивается n-кратным периодическим повторением циклов анализа. При вычислениях масс-спектров периодический режим масс-анализа учитывается введением в преобразования Фурье каждого цикла множителей, компенсирующих фазовые сдвиги гармоник и устраняющих периодическую амплитудную модуляцию наведенного тока. 1 ил.

Изобретение относится к аналитическому приборостроению, а именно к устройствам для анализа масс-спектрального состава веществ с источниками ионов с напуском пробы с атмосферы. Технический результат - повышение точности определения площади хроматографического пика. В масс-спектрометре камера ионизации разделена на две части металлической газопроницаемой перегородкой, в каждой части камеры ионизации имеется свой катод, подающий в нее пучок электронов, ионно-оптическая система вытягивает ионы из первой части камеры, энергия электронов E, подаваемых с катода во вторую часть камеры, выбирается, исходя из соотношения E<I, где I - потенциал ионизации молекул или атомов газа-носителя. Ионы, образующиеся во второй части камеры, поступают на коллектор, расположенный так, чтобы на него не попадали ионизирующие или вторичные электроны, и регистрируются на нем. 1 ил.

Изобретение относится к вакуумной технике, а именно к статическим магнитным масс- спектрометрическим анализаторам со 180-градусным поворотом и двойной магнитной фокусировкой, и может быть использовано в газовых течеискателях, в том числе гелиевых, предназначенных для испытания на герметичность различных систем и объектов, допускающих откачку внутренней полости до глубокого вакуума или заполнение ее гелийсодержащей смесью или другим пробным газом под избыточным давлением. Технический результат - повышение надежности и увеличение срока службы масс-спектрометрического анализатора; снижение вакуумных требований. Масс-спектрометрический анализатор газового течеискателя содержит вакуумную камеру с присоединительными фланцами, внутри которой размещены: источник ионов пробного газового вещества, состоящий из источника электронов и камеры ионизации; магнитная система, обеспечивающая разделение ионов по массам; приемник ионов. При этом в качестве источника электронов использован плазменный катод на основе плазмы тлеющего разряда, представляющий собой помещенную в аксиальное магнитное поле ячейку Пеннинга с эмиттером электронов, выполненным в виде щели для формирования ленточного электронного пучка в антикатоде ячейки, со стороны камеры ионизации. Предпочтительно, чтобы в центральной части анода ячейки Пеннинга были выполнены отверстия для «подкачки» остаточного газа из вакуумной камеры. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области времяпролетной масс-спектрометрии и найдет широкое применение при решении задач органической и биоорганической химии, токсикологии, криминалистики, иммунологии и медицины при ионизации молекул исследуемых веществ методами электронный удар, «электроспрей». Устройство ортогонального ввода ионов во времяпролетный масс-спектрометр (ВПМС) включает канал транспортировки поступающего из источника непрерывного пучка ионов, сформированный двумя электродами, ориентированными параллельно направлению движения непрерывного ионного пучка и предназначенными для создания импульсного электрического поля, выталкивающего ионы в направлении, перпендикулярном непрерывному пучку, и электроды для электростатического ускорения ионов, расположенные вне указанного канала. В промежуток между электродами, формирующими канал транспортировки заряженных частиц, введены дополнительные электроды, ориентированные параллельно направлению движения непрерывного ионного пучка, а приложенные к этим электродам статические электрические потенциалы обеспечивают сжатие непрерывного ионного пучка в направлении импульсного выталкивания ионов из канала. Технический результат - увеличение чувствительности ВПМС. 3 ил.

Изобретение относится к области масс-спектрометрии, а именно к источникам ионов с ионизацией при атмосферном давлении (фотоионизация, химическая ионизация при атмосферном давлении в коронном разряде и другие), и найдет широкое применение в масс-спектрометрии, спектрометрии подвижности ионов при решении задач органической и биоорганической химии, иммунологии, медицины, диагностики заболеваний, биохимических исследований, фармацевтике, токсикологии и экологии, проведении анализов в криминалистике и следового анализа наркотиков и их метаболитов. Способ основан на формировании газовой, транспортирующей ионы, струи, коаксиально обдувающей область образования ионов закрученной вихревой струей с образованием объемного закрученного потока с осевым течением, и дополнительного газового потока, формирующего вихревую пробоотборную струю в виде составного вихря, фокусирующего ионы на оси пробоотборного потока в центре вихревого ядра. Особенностью способа являются равенство линейных скоростей ламинарных потоков: газа-носителя из хроматографической колонки и внешнего коаксиального потока газа; при этом суммарный объемный поток, транспортирующий ионы, должен немного превышать поток газа с транспортируемыми ионами, поступающего в интерфейс масс-спектрометра. Техническим результатом является обеспечение транспортировки ионных потоков без дискриминации ионов по массам, уменьшения плотности ионов в транспортируемом потоке, потери хроматографического разделения при нормальных условиях, не прибегая к нагреву внешнего газа носителя, что существенно упрощает реализацию метода в широком диапазоне объемных скоростей потоков газа-носителя, при этом ионный ток анализируемых веществ хроматографической фракции поступает в анализатор без примесей из лабораторного воздуха. 1 ил.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической и биоорганической химии, иммунологии, биотехнологии, криминалистики, протеомики, метаболомики, медицины, экологии и охраны окружающей среды. Устройство непрерывного стабильного электрораспыления растворов в источнике ионов при атмосферном давлении выполнено в виде коаксиально расположенных капилляров, ориентированных вертикально. По внутреннему металлическому капилляру подается анализируемый раствор, к этому же капилляру прикладывается напряжение от высоковольтного источника питания. С торца этого капилляра происходит электрораспыление вертикально вверх. Для непрерывного стабильного электрораспыления вводимых проб (анализируемых растворов в узел электораспыления) и стабильного процесса распыления в канал подачи растворов устанавливается инжектор, например кран-переключатель с петлевым вводом пробы, позволяющий проводить ввод пробы без разрыва потока жидкости, а следовательно, и без переходных неустойчивых процессов выхода на стабильный режим распыления. В канал откачки парогазовой смеси из зазора между коаксиальными капиллярами устанавливается осушитель. Излишки нераспыленного раствора отделяются от парогазовой смеси и осушенный лабораторный воздух откачивается воздушным насосом. Технический результат - увеличение времени непрерывного стабильного распыления раствора, а следовательно. устойчивой работы прибора и стабильности регистрируемых спектров, уменьшение частоты обслуживания устройства распыления и источника ионов для их чистки. 4 ил.
Наверх