Вибрационный датчик

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств и предупреждения их опрокидывания. Устройство содержит электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации, индикатор превышения уровня перегрузки и блок предупреждения опрокидывания, содержащий элемент ИЛИ, ключ, схему сравнения, задатчик постоянной величины и сигнализатор. Причем первый и второй входы блока предупреждения опрокидывания соединены с соответствующими входами элемента ИЛИ, выход которого соединен с управляющим входом ключа, вход которого соединен с третьим входом блока предупреждения опрокидывания, а выход - с первым входом схемы сравнения, второй вход которой соединен с выходом задатчика постоянной величины, а выход - с входом сигнализатора. Первый и второй входы блока предупреждения опрокидывания соединены с соответствующими выходами электроконтактного датчика, а третий вход блока предупреждения опрокидывания соединен с выходом вычислителя. Технический результат заключается в расширении информационных возможностей датчика. 5 ил.

 

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств и предупреждения их опрокидывания.

Известен вибрационный датчик, содержащий электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор превышения уровня перегрузки, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного по боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым выходом которого является вывод кольцевого электроконтакта, центральный и второй электроконтакты соединены с положительным выводом источника питания, первая группа входов и второй вход вычислителя соединены соответственно с первой группой выходов и вторым выходом датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, входы обнуления триггеров и счетчика импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника питания, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n входов первого элемента ИЛИ, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации (Патент РФ №2279645, м. кл. G01H 11/06, от 15.09.2004 г., опубл. 10.07.2006, бюл. №19).

Недостатком данного вибрационного датчика являются заниженные информационные возможности из-за отсутствия возможности анализа и сигнализации о возможности опрокидывания транспортных средств.

Технической задачей изобретения является расширение информационных возможностей вибрационного датчика.

Сущность предлагаемого изобретения заключается в том, что вибрационный датчик, содержащий электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым выходом которого является вывод кольцевого электроконтакта, центральный и второй электроконтакты соединены с положительным выводом источника питания, первая группа входов и второй вход вычислителя соединены соответственно с первой группой выходов и вторым выходом датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, входы обнуления триггеров и счетчика импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника питания, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n входов первого элемента И, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации, дополнительно имеет блок предупреждения опрокидывания, содержащий элемент ИЛИ, ключ, схему сравнения, задатчик постоянной величины и сигнализатор, причем первый и второй входы блока предупреждения опрокидывания соединены с соответствующими входами элемента ИЛИ, выход которого соединен с управляющим входом ключа, вход которого соединен с третьим входом блока предупреждения опрокидывания, а выход - с первым входом схемы сравнения, второй вход которой соединен с выходом задатчика постоянной величины, а выход - с входом сигнализатора, первый и второй входы блока предупреждения опрокидывания соединены с соответствующими выходами электроконтактного датчика, а третий вход блока предупреждения опрокидывания соединен с выходом вычислителя.

На фиг.1 изображена конструктивная схема вибрационного датчика, где 1 - немагнитный конусообразный корпус с крышкой 2; 3 - инерционный элемент; 4, 5, 9, 10 - электроконтакты. На фиг.2 - то же, план. На фиг.3 - структурная схема электрической части вибрационного датчика, где 2 - вычислитель; 3 - индикатор направления перегрузки; 4 - индикатор величины перегрузки; 7 - инерционный элемент; 8, 9 - первый и второй электроконтакты; 10 - центральный электроконтакт; 11 - кольцевой электроконтакт; 12 - источник питания; 13 - триггер; 14, 15, 16 - первый, второй и третий элементы И; 17 - инвертор; 18 - генератор импульсов; 19 - дифференцирующая цепь; 20 - счетчик импульсов; 21 - умножитель; 22 - делитель; 23 - задатчик постоянной величины; 24 - блок обработки информации; 25 - индикатор превышения уровня перегрузки; 31 - блок предупреждения опрокидывания. На фиг.4 - блок обработки информации, где 26, 27 n первых и вторых пороговых устройств; 28 - n ключей; 29 - элемент ИЛИ; 30 - задатчик сигналов. На фиг.5 - функциональная схема блока предупреждения опрокидывания, где 32 - элемент ИЛИ; 33 - ключ; 34 - схема сравнения; 35 - задатчик постоянной величины; 36 - сигнализатор.

Вибрационный датчик содержит электроконтактный датчик 1, вычислитель 2, индикатор 3 направления перегрузки, индикатор 4 величины перегрузки, блок 24 обработки информации и индикатор 25 превышения уровня перегрузки, при этом электроконтактный датчик 1 состоит из немагнитного конусообразного корпуса 5 с крышкой 6, размещенной в вершине корпуса, инерционного элемента 7, выполненного в виде электропроводного шарика, первого 8 электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго 9 электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого 8 электроконтакта и параллельно ему, изолированных между собой центрального 10 и кольцевого 11 электроконтактов, центральный 10 электроконтакт размещен в вершине конуса второго 9 электроконтакта и изолирован от него, кольцевой 11 электроконтакт размещен по периметру вершины конуса второго 9 электроконтакта и изолирован от него, первый 8 электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика 1, вторым выходом которого является вывод кольцевого 11 электроконтакта, центральный 10 и второй 9 электроконтакты соединены с положительным выводом источника 12 питания, первая группа входов и второй вход вычислителя 2 соединены соответственно с первой группой выходов и вторым выходом датчика 1, первая группа выходов вычислителя 2 соединена с группой входов индикатора 3 направления перегрузки, второй выход - с входом индикатора 4 величины перегрузки, вычислитель 2 содержит группу из n триггеров 13, где n - число секторов первого 8 электроконтакта электроконтактного датчика 1, первый 14, второй 15 и третий 16 элементы И, инвертор 17, генератор 18 импульсов, дифференцирующую цепь 19, счетчик 20 импульсов, умножитель 21, делитель 22, задатчик 23 постоянной величины, причем информационные входы триггеров 13 соединены с соответствующими входами первой группы входов вычислителя 2, второй вход которого через инвертор 17 соединен с входом дифференцирующей цепи 19 и первым входом второго 15 элемента И, второй вход которого соединен с выходом генератора 18 импульсов, а выход второго 15 элемента И соединен с информационным входом счетчика 20 импульсов, входы обнуления триггеров 13 и счетчика 20 импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника 12 питания, прямые выходы триггеров 13 являются соответствующими выходами первой группы выходов вычислителя 2, а инверсные выходы соединены с соответствующими входами группы из n входов первого 14 элемента И, выход которого соединен с третьим входом второго 15 элемента И и вторым входом третьего 16 элемента И, первый вход которого соединен с выходом дифференцирующей цепи 19, а выход третьего 16 элемента И соединен с входом обнуления счетчика 20 импульсов, выход которого соединен с первым и вторым входами умножителя 21, выход которого соединен с первым входом делителя 22, второй вход которого соединен с выходом первого 23 задатчика постоянной величины, а выход является вторым выходом вычислителя 2, блок 24 обработки информации состоит из n первых 26, n вторых 27 пороговых устройств, n ключей 28, элемента 29 ИЛИ и задатчика постоянных сигналов 30, причем второй выход вычислителя 2 соединен соответственно с первым входом блока 24 обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока 24 обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока 24 обработки информации соединены соответственно со вторыми входами n вторых 27 и первыми входами n первых 26 пороговых устройств, выходы n первых 26 пороговых устройств соединены с первыми входами n ключей 28, первые и вторые выходы второго 30 задатчика постоянных сигналов соединены соответственно со вторыми входами n первых 26 пороговых устройств и вторыми входами n ключей 28, выходы которых через первые входы n вторых 27 пороговых устройств соединены с n входами элемента 29 ИЛИ, выход которого является выходом блока 24 обработки информации, дополнительно имеет блок 31 предупреждения опрокидывания, содержащий элемент 32 ИЛИ, ключ 33, схему 34 сравнения, задатчик 35 постоянной величины и сигнализатор 36, причем первый и второй входы блока 31 предупреждения опрокидывания соединены с соответствующими входами элемента 32 ИЛИ, выход которого соединен с управляющим входом ключа 33, вход которого соединен с третьим входом блока 31 предупреждения опрокидывания, а выход - с первым входом схемы 34 сравнения, второй вход которой соединен с выходом задатчика 35 постоянной величины, а выход - с входом сигнализатора 36, первый и второй входы блока 31 предупреждения опрокидывания соединены с соответствующими выходами электроконтактного датчика 1, а третий вход блока предупреждения опрокидывания соединен с выходом вычислителя 2.

Вибрационный датчик функционирует следующим образом.

Вибрационный датчик устанавливается на транспортное средство таким образом, чтобы выходы электроконтактного датчика, соединенные с блоком предупреждения опрокидывания, были перпендикулярны направлению движения транспортного средства.

В исходном состоянии сигнал с положительной шины питания подается на входы обнуления счетчика 20 и группы из n триггеров 13, при этом с инверсных выходов триггеров 13 сигналы через первый 14 элемент И поступают на третий вход второго 15 элемента И. Под воздействием перегрузки энерционный элемент 7 в виде электропроводного шарика перемещается в направлении одного из секторов первого 8 электроконтакта, при этом происходит размыкание центрального 10 и кольцевого электроконтакта 11 (фиг.1 и 2), приводящее к снятию сигнала с выхода инвертора 17.

Сигнал с выхода инвертора 17 поступает на вход дифференцирующей цепи 19 и на первый вход второго 15 элемента И (фиг.3).

С выхода дифференцирующей цепи 19 сигнал через первый вход третьего 16 элемента И поступает на вход обнуления счетчика 20.

С выхода генератора 18 сигнал в виде импульсов поступает через второй вход второго 15 элемента И на первый вход счетчика 20.

В дальнейшем при движении электропроводного шарика 7 происходит замыкание второго 9 и одного из секторов первого 8 электроконтакта (фиг.2), при этом сигнал поступает на первый вход одного из n триггеров 13, с прямого выхода которого сигнал поступает на вход индикатора 3 направления перегрузки, а отсутствие сигнала с инверсного выхода триггера 13 приводит к прекращению подсчета импульсов счетчиком 20 через первый 14 и второй 15 элементы И.

С выхода счетчика 20 импульсов сигнал, пропорциональный времени t движения электропроводного шарика, поступает на первый и второй входы умножителя 21, с выхода которого сигнал, пропорциональный t2, поступает на первый вход делителя 22, на второй вход которого с выхода задатчика 23 поступает сигнал, пропорциональный величине (фиг.2).

С выхода делителя 22 сигнал, пропорциональный поступает одновременно на вход индикатора 4 величины перегрузки, на первый вход блока обработки информации 24 и на третий вход блока 31 предупреждения опрокидывания.

Блок 24 обработки информации предназначен для определения исправности тормозной системы транспортного средства путем сравнения текущей величины перегрузки n с эталонными значениями с учетом начальных условий возникновения перегрузки (фиг.4).

С первой группы выходов второго 30 задатчика сигналы поступают на вторые входы первого 26 порогового устройства, на первые входы которого поступают сигналы, пропорциональные скорости движения транспортного средства. С выходов первых 27 пороговых устройств сигналы, соответствующие скорости движения транспортного средства, поступают на первые входы ключей 28, на вторые входы которых поступают сигналы, пропорциональные эталонным значениям перегрузки, со вторых выходов второго 30 задатчика сигналов.

С выходов n ключей 28 сигналы поступают на первые входы n вторых 27 пороговых устройств, на вторые входы которых поступает сигнал, пропорциональный текущей перегрузке nтек.

В случае превышения уровня текущей перегрузки заданных эталонных значений сигнал с выходов вторых 27 пороговых устройств через первый 29 элемент ИЛИ поступает на вход индикатора 25 превышения уровня перегрузки, тем самым обеспечивая автоматическое определение исправности тормозной системы транспортного средства.

Таким образом обеспечивается автоматическое определение исправности тормозной системы транспортного средства за счет сравнения текущей величины перегрузки с заданным эталонным значением с учетом начальных условий возникновения перегрузки.

Блок предупреждения опрокидывания 31 функционирует следующим образом.

При возникновении поперечной перегрузки на соответствующих первых выходах вычислителя 2 формируется сигнал, который через первый или второй вход блока предупреждения опрокидывания 31 поступает на вход элемента ИЛИ 32. Сигналом с выхода элемента ИЛИ 32 открывается ключ 33 и сигнал со второго выхода вычислителя 2, соответствующий величине перегрузки, поступает на первый вход схемы сравнения 34. На второй вход схемы сравнения 34 поступает сигнал с выхода задатчика постоянной величины 35, соответствующий величине предельной боковой перегрузки. При превышении сигнала со второго выхода вычислителя 2 сигнала с выхода задатчика постоянной величины 35 на выходе схемы сравнения 34 формируется сигнал, поступающий на сигнализатор 36 для предупреждения о возможности опрокидывания транспортного средства.

Вибрационный датчик, содержащий электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым выходом которого является вывод кольцевого электроконтакта, центральный и второй электроконтакты соединены с положительным выводом источника питания, первая группа входов и второй вход вычислителя соединены соответственно с первой группой выходов и вторым выходом датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n-триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, входы обнуления триггеров и счетчика импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника питания, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n-входов первого элемента И, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации, отличающийся тем, что имеет блок предупреждения опрокидывания, содержащий элемент ИЛИ, ключ, схему сравнения, задатчик постоянной величины и сигнализатор, причем первый и второй входы блока предупреждения опрокидывания соединены с соответствующими входами элемента ИЛИ, выход которого соединен с управляющим входом ключа, вход которого соединен с третьим входом блока предупреждения опрокидывания, а выход - с первым входом схемы сравнения, второй вход которой соединен с выходом задатчика постоянной величины, а выход - с входом сигнализатора, первый и второй входы блока предупреждения опрокидывания соединены с соответствующими выходами электроконтактного датчика, а третий вход блока предупреждения опрокидывания соединен с выходом вычислителя.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для бесконтактной и дистанционной регистрации вибраций и перемещений поверхности, способной отражать радиоволны.

Изобретение относится к измерению механических колебаний и может быть использовано в системах автоматики и сигнализации, а именно для определения опасных вибраций при воздействии их на человека.

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств.

Изобретение относится к контрольно-измерительной технике и может использоваться для бесконтактного измерения и непрерывного контроля амплитуды колебаний турбинных и компрессорных лопаток в эксплуатационных условиях.

Изобретение относится к контролю качества микромеханических устройств, используемых в акселерометрах, гироскопах, датчиках давления. .

Изобретение относится к контрольно-измерительной технике для бесконтактного измерения и непрерывного контроля параметров колебаний турбинных и компрессорных лопаток.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения амплитуды низкочастотных колебаний, например, при испытаниях на усталостную прочность авиаконструкций.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения виброперемещений при низкочастотных колебаниях, например при испытаниях авиаконструкций на усталость.
Изобретение относится к контрольно-измерительной технике и может использоваться для бесконтактного измерения и непрерывного контроля амплитуды колебаний турбинных и компрессорных лопаток в эксплуатационных условиях.

Изобретение относится к микромеханике и предназначено для измерения частотных характеристик подвижных элементов микромеханических устройств

Изобретение относится к устройствам контроля пространственных величин, например пространственной вибрации, и может быть использовано в системах контроля, диагностики, защиты и навигации

Изобретение относится к измерительной технике и может быть использовано для измерения амплитуды, скорости и ускорения механических колебаний контролируемого объекта

Изобретение относится к области измерительной техники и может быть использовано в качестве контрольно-сигнального устройства для контроля квазистатических и низкочастотных параметров состояния машин в процессе эксплуатации. Технический результат заключается в расширении функциональных возможностей, уменьшении времени готовности и обеспечении помехоустойчивости. Технический результат достигается благодаря тому, что в устройство для контроля сигналов дополнительно введены шины начального напряжения и сигнализации, пороговый элемент, аналоговый ключ с управляющим входом, третий резистор, диод, катод которого соединен с шиной питания и входом интегрирующей RC-цепи, выход которой соединен с анодом диода и входом порогового элемента, выход которого соединен с первым выводом второго резистивного делителя и управляющим входом аналогового ключа, вход которого соединен с шиной начального напряжения, а выход - с первым выводом первого конденсатора, второй вывод которого через третий резистор соединен с общей шиной, шина среднего значения соединена с первым входом второго операционного усилителя, выход которого соединен с шиной сигнализации, второй вывод второго резистивного делителя соединен либо с шиной питания, либо с общей шиной. 5 ил.

Использование: изобретение относится к измерительной технике для диагностирования технического состояния машин с вращающимися элементами. Сущность: система содержит установленные на нем в зоне по меньшей мере одной измерительной плоскости по длине вала 1 равномерно по его окружности информационные элементы угловых перемещений вала, например, в виде зубцов 3 установленного на валу 1 зубчатого кольца 2. На валу 1 установлен также информационный элемент отметчика оборотов его вращения в виде одиночного зуба 6 на отдельном зубчатом кольце 7 или в виде выделенного меньшими размерами в общем зубчатом кольце 2 одного из его зубцов 3.1. Кроме того, вне вала 1 установлены неподвижные измерительные датчики 4 по одному в каждой его измерительной плоскости и неподвижный датчик отметчика оборотов, установленный в плоскости расположения его информационного элемента. Система также содержит соединенный с указанными датчиками аппаратно-программный блок для преобразования и математической обработки полученной от датчиков информации. Отличие: в каждой измерительной плоскости дополнительно установлен второй измерительный датчик 5, аналогичный первому датчику 4 и расположенный по отношению к нему под углом 180° с противоположной стороны вала 1 в той же измерительной плоскости. Число информационных элементов в каждой измерительной плоскости является четным. Каждый информационный элемент угловых перемещений вала составляет пару с другим аналогичным информационным элементом (зубцом 3), расположенным на том же диаметре с противоположной стороны вала 1. В способе на каждом обороте вала определяют временные интервалы ti, между опорным импульсом отметчика оборотов (зуба 3.1) и текущими импульсами, для каждой пары последовательных импульсов с номерами i и i+k/2 определяют полусумму интервалов времени Δti=0,5(ti+k/2+ti), мгновенные значения угловых смещений текущих импульсов φi=Δti·ωj относительно опорного импульса и распределение по окружности вала мгновенных значений угловых перемещений, обусловленных крутильными колебаниями Δφi=φi-φ0i. Технический результат: повышение точности и достоверности диагностирования. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано при проектировании и поузловой доводке элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов. Способ характеризуется тем, что подсчитывают количество лопаток рабочего колеса, подсчитывают количество лопаток направляющего или соплового аппарата, вычисляют предполагаемые резонансные частоты колебаний рабочего колеса в рабочем диапазоне частот вращения турбомашины. Затем экспериментально выявляют резонансные частоты колебаний рабочего колеса, сопоставляют значения предполагаемых и экспериментально выявленных резонансных частот колебаний. По результату сопоставления определяют качественную составляющую и/или количественную составляющую характеристики колебательного движения элемента турбомашины. Технический результат заключается в ускорении и упрощении процесса поузловой доводки элементов ступеней турбомашин, а именно рабочих колес, колес направляющих и сопловых аппаратов, посредством установления зависимости частоты и формы колебаний от конструктивных параметров исследуемой ступени турбомашины. 3 з.п. ф-лы, 6 ил., 2 табл.

Изобретение предназначено для бесконтактного определения амплитуды, частоты и фазы колебаний лопаток турбоагрегатов и может быть использовано для определения дефектов лопаток турбомашин в процессе их эксплуатации. Способ заключается в установлении на неподвижном узле турбомашины оборотного импульсного датчика и возбудителя - оборотной отметки, а также в корпусе турбомашины, в плоскости вращения контролируемого лопаточного колеса над траекторией движения торцов лопаток устанавливают неподвижный бесконтактный периферийный датчик. Датчик регистрирует информационные сигналы взаимодействия периферийного первичного преобразователя с торцом лопаток. На основании данных справочной литературы определяют аналитическое выражение, решают систему нелинейных уравнений. Технический результат заключается в увеличении точности и достоверности определения амплитуды, частоты и фазы колебаний всех лопаток вращающегося колеса турбомашины. 2 н.п. ф-лы, 2 ил.

Изобретение относитcя к метрологии, в частности к средствам контроля природных и техногенных явлений, сопровождающихся эмиссией инфразвука. Переносная инфразвуковая система состоит из трех модульных радиомикрофонов, каждый из которых содержит поляризованный микрофон свободного поля, используемый совместно с микрофонным усилителем и повторителем на операционном усилителе, аналого-цифровой 24-битный преобразователь последовательного приближения (SAR), результаты преобразования которого через блок гальванической развязки поступают в контроллер управления на 32-битном микропроцессоре с GPS-приемником. Данные с GPS-приемника используются для привязки измеренных данных к точному времени и координатам модульного радиомикрофона. Система также содержит радиомодем, осуществляющий передачу данных в виде пакетов на базовый модуль. Базовый модуль состоит из трех радиомодемов, контроллера управления, конвертера интерфейса СОМ-USB, компьютера. При этом базовый модуль связан с компьютером через преобразователь основных напряжений питания, а модульный радиомикрофон имеет аккумулятор, обеспечивающий радиомикрофон питанием через преобразователь основных напряжений. Технический результат – повышение эффективности работы системы за счет обеспечения беспроводной передачи данных. 2 ил.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер. Технологический измерительный преобразователь расположен внутри термокармана и выполнен с возможностью выработки первого сигнала датчика. Вибродатчик без внешнего питания выполнен с возможностью выработки второго сигнала датчика, отражающего вибрацию термокармана. Технологический трансмиттер выполнен с возможностью приема, обработки и передачи первого и второго сигналов датчиков. Технический результат – повышение эффективности контроля технологического процесса за счет исключения повреждения термокармана, в котором установлен технологический измерительный преобразователь. 2 н. и 22 з.п. ф-лы, 3 ил.
Наверх