Сегнетоэлектрический элемент для запоминающего устройства с оптическим считыванием информации

Изобретение относится к области электроники и может быть использовано при конструировании датчиков оптического излучения видимой области спектра и преобразователей солнечной энергии. Техническим результатом является повышение точности и надежности работы. Устройство содержит расположенную на подложке пленку на основе поляризованного сегнетоэлектрика - цирконата-титаната свинца с двухсторонним электродным покрытием, которое с внешней стороны пленки полупрозрачно. Для повышения надежности устройства путем обеспечения его работы в статическом режиме пленка цирконата-титаната свинца выполнена поликристаллической в матрице оксида свинца. 2 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к микроэлектронике и микросенсорике и может быть использовано при конструировании датчиков оптического излучения видимой области спектра и преобразователей солнечной энергии. Преимущественной областью использования является конструирование и технология производства запоминающих устройств (ЗУ) с оптическим считыванием информации.

Известен сегнетоэлектрический элемент с оптической записью информации, содержащий сэндвич-структуру сегнетоэлектрических и фотопроводящих слоев, заключенных между парами электродов с образованием многослойного конденсатора (US 4041477, G11В 7/24, G11C 11/22, 1977).

Однако данная конструкция обладает низкой чувствительностью и сложна в изготовлении.

Для повышения чувствительности и возможности выбора рабочей области спектра оптического излучения сегнетоэлектрический элемент с оптической записью информации, включающий подложку с последовательно нанесенными на нее слоем металла - электродом, слоем сегнетоэлектрика, выполненного из поляризованного нелегированного материала, и полупроводниковым слоем, выполненным из униполярного материала, где знак поверхностного заряда слоя сегнетоэлектрика совпадает со знаком заряда основных носителей полупроводникового слоя, и электроды к полупроводниковому слою для подключения сегнетоэлектрической пленки и участков полупроводниковой пленки к внешней электрической цепи (RU 2281585, H01L 31/10, 2006).

Известен также энергонезависимый сегнетоэлектрический элемент для ЗУ, содержащий сегнетоэлектрик или электрет с гистерезисной характеристикой поляризации, на базе которого сформирована одна или несколько ячеек памяти в виде конденсаторов (WO 03/021601, G11C 11/22, 2003; WO 03/052762, G11C 5/02, 2003; WO 03/088041, G06F 15/00, 2003; RU 2269830, G11C 11/22, H01L 27/115, H01L 23/532, 2006).

Однако данные устройства является энергозависимыми в отношении считывания выходного сигнала.

Для обеспечения высокоскоростного оптоэлектронного считывания информации сегнетоэлектрический элемент выполнен в виде конденсатора, между пластинами которого расположена пленка цирконата-титаната свинца (Thakoor, "High speed optoelectronic response from the edges of lead zirconatettanate or titanate thin films capacitors". Applied Physics Letters, Vol.63 No.23 pages 3233-3235, Dec.6, 1993). Этот принцип реализован в конструкции ближайшего аналога - сегнетоэлектрического элемента для запоминающего устройства с оптическим считыванием информации, содержащего пленку на основе поляризованного сегнетоэлектрика - цирконата-титаната свинца (ЦТС) с двухсторонним электродным покрытием, выполненным полупрозрачным с внешней стороны пленки. При этом сегнетоэлектрическая пленка с указанным покрытием расположена на подложке, а для повышения надежности устройства его схема считывания информации оснащена амплитудным детектором, учитывающим амплитуды отклонений информационного сигнала при изменении полярности (US 6108111, G11C 11/22, H01G 7/06, 2000).

Однако выходной сигнал при освещении прототипного устройства видимой областью спектра является импульсным, что снижает точность и надежность измерений.

Техническая задача предлагаемого устройства состоит в повышении точности и надежности его работы.

Решение указанной технической задачи состоит в том, что в сегнетоэлектрическом элементе для запоминающего устройства с оптическим считыванием информации, содержащем расположенную на подложке пленку на основе поляризованного сегнетоэлектрика - ЦТС с двухсторонним электродным покрытием, которое с внешней стороны пленки является полупрозрачным, используемая пленка ЦТС выполнена поликристаллической в матрице оксида свинца.

Причинно-следственная связь внесенного изменения с достигнутым техническим результатом состоит в том, что генерируемые под действием излучения видимого диапазона в полупроводниковой матрице носители заряда разделяются полем поляризации сегнетоэлектрических кристаллитов. Поэтому в короткозамкнутой цепи конденсатора с поликристаллической пленкой ЦТС в течение времени освещения протекает стационарный фототок, статическая характеристика которого зависит от интенсивности потока светового облучения.

На чертеже приведена конструкция предлагаемого устройства.

Сегнетоэлектрический элемент для запоминающего устройства с оптическим считыванием информации содержит подложку 1, на которую нанесена пленка 2 поликристаллического поляризованного сегнетоэлектрика - ЦТС, выполненная в матрице PbO. На чертеже кристаллы ЦТС обозначены поз.2, а заполнение между ними (матрица PbO) - поз.26. Пленка 2 снабжена двухсторонним электродным покрытием (поз.3 и 4), причем внешнее покрытие 4, расположенное со стороны принимаемого светового потока, выполнено полупрозрачным. Во внешней электрической цепи установлен наноамперметр 5, подключенный к электродным покрытиям 3 и 4 с помощью выводов 6 и 7 соответственно для измерения тока в режиме короткого замыкания.

При освещении сегнетоэлектрического элемента с длиной волны в видимой области спектра, направленном со стороны электродного покрытия 4, возникает фототок, фиксируемый прибором 5. При этом значение и знак фототока изменяются в зависимости от степени и направления остаточной поляризации ЦТС соответственно. Это и обеспечивает возможность не только оптического считывания информации при использовании целевого изделия в составе запоминающих устройств, но и измерение освещенности.

Предлагаемый сегнетоэлектрический элемент может быть изготовлен, как описано в нижеследующих примерах.

ПРИМЕР 1. На кремниевую подложку 1 наносят 150-нм электродное покрытие 3 ионо-плазменным распылением платины. Далее наносят поликристаллическую пленку ЦТС высокочастотным магнетронным распылением мишени из PbZrxTi1-xO3. Для разных вариантов целевого изделия данную операцию выполняют согласно описанию изобретения US 6340621, С23С 14/08, H01L 21/316, 21/02, 2002 высокочастотным магнетронным распылением мишени из PbZrxTi1-xO3 со сверхстехиометрическим (1,15±0,05) содержанием Pb при температуре 350°С в течение 1 ч с последующим отжигом при 620°С в течение 30 мин, а также способом, предусматривающим низкотемпературное распыление мишени при 110÷150°С и прочих равных условиях.

По окончании операции отжига на внешнюю поверхность пленки ЦТС наносят полупрозрачное платиновое электродное покрытие 4 толщиной 20 нм с помощью установки ионо-плазменного распыления. К электродным покрытиям 3 и 4 присоединяют выводы 6 и 7 для подключения к внешней электрической цепи.

Для поляризации сегнетоэлектриков к выводам 6 и 7 прикладывают постоянное напряжение 3В.

Результаты 4-кратных испытаний полученных сегнетоэлектрических элементов в режиме короткого замыкания при освещении покрытия 4 галогенной лампой мощностью 20Вт с расстояния 20 см и различной направленности остаточной поляризации ЦТС приведены в табл.1. Как видно из табл., получение поликристаллической пленки ЦТС в матрице PbO с использованием данной технологии возможно только в режиме низкотемпературного (110÷150°С) распыления мишени. При высокотемпературном распылении мишени происходит интенсивное испарение Pb вследствие чего матрица PbO не образуется и целевое изделие оказывается нечувствительным к световому воздействию. Оптимальный вариант целевого изделия достигается при использовании пленки ЦТС, полученной высокочастотным магнетронным распылением мишени из PbZrxTi1-xO3 со сверхстехиометрическим содержанием Pb при температуре подложки 130°С. В этом случае наблюдается среднее значение фототока, равное 7,8 нА. В темновом режиме фототок отсутствует.

ПРИМЕР 2. На кремниевую подложку 1 наносят электродное покрытие 3, как в примере 1. Далее для разных вариантов целевого изделия наносят пленку ЦТС химическим осаждением из паров металлоорганических соединений с последующим отжигом. Основные процессы данной операции осуществляют согласно описанию патента KR 100438809, G11C 11/22, Н01L 21/20, 41/16, 2004 при избыточном соотношении Pb/(Zr+Ti), равном 1,08, как это указано в данном патенте, а также при соотношении Pb/(Zr+Ti)=0,95±0,025 в течение 1 ч при температуре подложки 545°С с последующим отжигом в течение 1 мин при 600°С. Возможно, что указанные значения режимных параметров технологии являются уникальными, поскольку в переводе указанного патента они отсутствуют. Это, по-видимому, обеспечивает получение требуемой поликристаллической структуры пленки ЦТС в матрице PbO, тогда как задачей способа по патентному описанию KR 100438809 является получение монокристаллической пленки ЦТС в отсутствие прослойки PbO. При этом имеет место парадоксальный факт, что предлагаемый режим, где, как указано выше, соотношение свинца к цирконию и титану меньше единицы, позволяет получить пленку ЦТС в матрице PbO, тогда как в прототипном способе даже избытке свинца в предшественнике пленку ЦТС получают без прослойки PbO. Причина этого явления неизвестна.

Остальные операции выполняют, как в примере 1.

Технические характеристики полученных целевых изделий указаны в табл.2. Как видно из табл., использование поликристаллической пленки ЦТС в матрице PbO, полученной описанным в данном примере способом, обеспечивает изготовление целевых изделий, обладающих фоточувствительностью в видимой части спектра, что подтверждается значением фототока от 6,6 до 7,2 нА при освещении покрытия 4 галогенной лампой мощностью 20 Вт с расстояния 20 см. В темновом режиме фототок отсутствует.

Как проиллюстрировано приведенными примерами, использование предлагаемого технического решения по сравнению с прототипом обеспечивает повышение точности и надежности работы целевого изделия, поскольку выходной сигнал является статическим, вследствие чего его значение не зависит от длительности измерений и погрешностей, вносимых в амплитудное значение, как это имело место при дифференциальном отклике на освещение изделия-прототипа.

Техническим результатом, производным от достигнутого, является расширение диапазона использования целевого изделия, поскольку оно в ключевом режиме может использоваться для оптического считывания двоичной информации в схемах запоминающих устройств, где входной сигнал управляет направлением поляризации ЦТС, а в непрерывном режиме - для измерения освещенности.

Таблица 1
Технические характеристики целевых изделий к примеру 1
Температура подложки при нанесения пленки ЦТС, °СМикроструктура пленки ЦТСОстаточная поляризация пленки ЦТС, мКл/см2Фототок, нА
350 (US 6340621)Поликристаллическая без прослойки PbO410
250«-»370
150Поликристаллическая в матрице PbO352,3
130«-»337,8
110«-»324,5

Таблица 2
Технические характеристики целевых изделий к примеру 2
Соотношение компонентов Pb/(Zr+Ti) в газе-предшественникеМикроструктура пленки ЦТСОстаточная поляризация пленки ЦТС, мКл/см2Фототок, нА
>1 (KR 100438809)Моноблочная без прослоек PbOДанных нет0
0,925Поликристаллическая в матрице PbO327,2
0,950«-»287,0
0,975«-»256,3

1. Сегнетоэлектрический элемент для запоминающего устройства с оптическим считыванием информации, содержащий расположенную на подложке пленку на основе поляризованного сегнетоэлектрика - цирконата-титаната свинца с двухсторонним электродным покрытием, которое с внешней стороны пленки выполнено полупрозрачным, отличающийся тем, что пленка цирконата-титаната свинца выполнена поликристаллической в матрице оксида свинца.

2. Сегнетоэлектрический элемент по п.1, отличающийся тем, что используют поликристаллическую пленку цирконата-титаната свинца в матрице оксида свинца, полученную высокочастотным магнетронным распылением мишени из PbZrxTi1-xO3 со сверхстехиометрическим содержанием Pb.

3. Сегнетоэлектрический элемент по п.1, отличающийся тем, что используют поликристаллическую пленку цирконата-титаната свинца в матрице оксида свинца, полученную химическим осаждением из паров металлоорганических соединений.



 

Похожие патенты:

Изобретение относится к области электротехники и электроники, в частности к устройствам, накапливающим электрические заряды - конденсаторам, и может быть использовано при создании конденсаторов с существенно повышенной электроемкостью.

Изобретение относится к радиоэлектронной промышленности, а именно к способу управления емкостью электрического конденсатора и конденсатору переменной емкости на основе этого способа, и может быть использовано в конденсаторостроении

Изобретение относится к способам, химическим составам и устройству для генерации электричества

Заявленное изобретение относится к области электротехники и направлено на предотвращение изменения емкости при смещении электродов, расположенных один напротив другого через слой диэлектрика. Емкостный прибор согласно изобретению содержит слой (10) диэлектрика, первый электрод (11), выполненный на заданной поверхности (10а) слоя (10) диэлектрика, и второй электрод (12), выполненный на противоположной поверхности (10b) слоя (10) диэлектрика. Первый и второй электроды (11, 12) выполнены такой формы, чтобы даже в случае смещения первого электрода (11) в заданном направлении относительно второго электрода (12) площадь перекрывающейся области противоположных электродов между первым электродом (11) и вторым электродом (12) оставалась неизменной. Повышение стабильности работы емкостных приборов с переменной емкостью является техническим результатом заявленного изобретения. 2 н. и 12 з.п. ф-лы, 61 ил.

Изобретение относится к области СВЧ радиоэлектроники и предназначено для работы в СВЧ устройствах при повышенном уровне мощности СВЧ сигнала в качестве нелинейного элемента в виде сегнетоэлектрического конденсатора с электрическим управлением номинала емкости. Сегнетоэлектрический (СЭ) конденсатор состоит из диэлектрической подложки (1), на которой из электропроводящей пленки сформированы электроды планарного конденсатора (2) и (3), электроды (6) и (7) для подачи управляющего напряжения и полосковые линии (4) и (5), соединяющие электроды (2),(6) и электроды (3), (7), СЭ пленки (8), покрывающей диэлектрическую подложку с электродами, на которой из электропроводящей пленки сформированы электроды (9) и (10) над электродами (2) и (3) с частичным перекрытием площадей для подключения к внешней СВЧ цепи и электроды (11) и (12) над электродами (6) и (7) для подключения к внешней цепи управления. Конденсаторы с электродами (2) и (9) и с электродами (3) и (10) блокируют протекание постоянного тока от источника управляющего напряжения через СВЧ цепи. Индуктивное сопротивление полосковых линий (4) и (5) предотвращает утечку мощности СВЧ сигнала во внешние цепи управления СЭ конденсатором. Техническим результатом заявленного изобретения является снижение уровня управляющего напряжения при повышенных уровнях мощности СВЧ сигнала. 2 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в микроэлектронике при изготовлении широкого класса управляемых электрическим полем элементов, в частности для производства энергонезависимых сегнетоэлектрических запоминающих устройств. Для изготовления сегнетоэлектрического конденсатора на подложку (1) напыляют нижний электрод (2), на который послойно наносят пленкообразующий раствор на основе цирконата-титаната свинца с послойными сушкой и пиролизом для формирования нескольких слоев твердого раствора (3-1)…(3-n). Сформированные несколько слоев твердого раствора (3-1)…(3-n) подвергают кристаллизации (4) для получения сегнетоэлектрической пленки (5). На сегнетоэлектрическую пленку (5) напыляют верхний электрод (6). В пленкообразующий раствор на основе цирконата-титаната свинца для формирования слоя твердого раствора (3-1), примыкающего к нижнему электроду, вводят 0÷7%-ный избыток свинца сверх стехиометрии, а в пленкообразующий раствор на основе цирконата-титаната свинца для формирования остальных слоев твердого раствора (3-2)…3-n вводят 8÷30%-ный избыток свинца сверх стехиометрии. Изобретение обеспечивает улучшение электрических свойств сегнетоэлектрической пленки (5) на основе цирконата-титаната свинца: повышает остаточную поляризацию, увеличивает диэлектрическую нелинейность и снижает токи утечки. 8 з.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к области нанесения тонких диэлектрических пленок для создания устройств микро- и наноэлектроники на основе перспективных материалов, в частности элементов энергонезависимой памяти на основе явления сегнетоэлектричества (FeRAM, ferroelectric random access memory) с деструктивным считыванием, к которому предъявляются жесткие требования к ресурсу, времени хранения информации и энергоемкости. В основе изобретения лежит способ нанесения тонкой пленки многокомпонентного оксида гафния и циркония методом атомно-слоевого осаждения из металлоорганических прекурсоров гафния Hf[N(CH3)(C2H5)]4 (ТЕМАН) и циркония Zr[N(CH3)(C2H5)]4 (TEMAZ) на нижний электрод в виде смеси из двух металлоорганических реагентов ТЕМАН и TEMAZ, подаваемой из общего прогреваемого контейнера. Повышение электрофизических характеристик сегнетоэлектрического конденсатора является техническим результатом изобретения. 1 з.п. ф-лы, 3 ил., 4 пр.
Наверх