Устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов

Изобретение относится к измерительной технике. Устройство содержит цилиндрическую вакуумную камеру с размещенными в ней охлаждаемым экраном, исследуемым образцом материала с нагревателем, закрепленными на вращающейся подвеске, и оптическую измерительную систему, состоящую из монохроматора, модулятора, инфракрасных линз и приемника излучения. Нагрев образца производится или инфракрасным излучением или электрическим током за счет омического сопротивления. Техническим результатом изобретения является создание устройства, обеспечивающего измерение угловых зависимостей спектральных коэффициентов излучения. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения, необходимых при решении тепловых задач в авиационной и космической технике.

Известно устройство для измерения угловых зависимостей интегральных коэффициентов излучения материалов (В.В.Митор, И.Н.Конопелько. «Исследование степени черноты твердых тел». Теплоэнергетика, № 7, 1966). В этом устройстве изменение углового положения образца по отношению к направлению визирования достигается за счет перемещения интегрального приемника излучения по дуге окружности вокруг неподвижного образца.

Недостатком такого устройства является отсутствие возможности измерения спектральных коэффициентов излучения.

Из известных устройств для измерения спектральных коэффициентов излучения наиболее близко по технической сути к предлагаемому является устройство, содержащее вакуумную камеру, исследуемый образец, монохроматор и приемник излучения (а.с. № 1132153, кл. G01J 5/00, 1984 г.).

Недостатком этого устройства является отсутствие возможности измерять угловые зависимости спектральных коэффициентов излучения.

Задачей и техническим результатом настоящего изобретения является создание устройства, позволяющего измерять угловые зависимости спектральных коэффициентов излучения.

Решение задачи и указанный технический результат достигаются тем, что устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов, содержащее вакуумную камеру, исследуемый образец, монохроматор и приемник излучения, причем вакуумная камера снабжена охлаждаемым цилиндрическим экраном, установленным на отдельном фланце, позволяющем поворачивать экран вокруг оси, в стенке экрана выполнены узкие щели различной площади, положение которых относительно линии визирования устанавливается за счет поворота экрана, при этом угловое положение образца обеспечивается с помощью подвески, ось вращения которой смещена относительно линии визирования на расстояние, позволяющее выводить образец из поля зрения приемника излучения.

На фиг.1 представлена оптическая схема предлагаемого устройства.

На фиг.2, для примера, показаны результаты измерений с помощью предлагаемого устройства угловых зависимостей спектральных коэффициентов двух образцов разных материалов.

Устройство (фиг.1) содержит цилиндрическую вакуумную камеру 1 (на схеме фиг.1 показано поперечное сечение камеры), с размещенными в ней экраном 2, охлаждаемым водой или жидким азотом, исследуемым образцом материала 3 с нагревателем 4, и оптическую измерительную систему, содержащую монохроматор 10, приемник излучения 11, модулятор 9 и инфракрасные линзы 7, 8, соединенную с вакуумной камерой с помощью тубуса 6 и разделительного окна 5.

Исследуемый образец материала 3 с нагревателем 4 установлены на подвеске (на фиг.1 не показана), ось вращения которой смещена относительно линии визирования на расстояние, позволяющее выводить образец из поля зрения приемника излучения 11.

В стенке экрана 2 имеются узкие разной площади щели hi, предназначенные для диафрагмирования потока излучения образца.

Нагрев образца 3 осуществляется или инфракрасным нагревателем 4, как показано на фиг.1, или за счет омического нагрева при пропускании по нему электрического тока.

Определение угловых зависимостей спектральных коэффициентов излучения на предлагаемом устройстве основано на сравнении монохроматических энергий, излучаемых в малом телесном угле исследуемым образцом материала, расположенным под разными углами ϕ (фиг.1) к линии визирования, и моделью абсолютно черного тела, устанавливаемого на место образца, при равных площадях проекций излучаемых поверхностей на плоскость, нормальную линии визирования.

Измерения проводятся в вакуумной камере и заключаются в фиксировании при заданной длине волны сигналов от приемника при направленном излучении образца, холодного экрана и модели абсолютно черного тела.

Перед проведением процедуры измерений предварительно регистрируется величина сигнала от приемника при нормальном излучении образца при заданной температуре нагрева. В зависимости от величины сигнала на линии визирования за счет поворота экрана устанавливается щель с площадью, позволяющей получить максимальный сигнал от приемника при приемлемом телесном угле наблюдения.

Сама процедура измерений проводится следующим образом.

Образец 3 с помощью подвески, ось вращения которой смещена относительно линии визирования, выводится из поля зрения приемника 11. Излучение экрана 2, разложенное в спектр монохроматором 10, фиксируется с помощью приемника 11 в виде зависимости сигнала Ne от длины волны λ (Ne(λ)). Затем образец 3 нагревается с помощью нагревателя 4 до требуемой температуры и при различных значениях угла ϕ, устанавливаемых за счет вращения образца (см. фиг.1), при заданной длине волны λf фиксируется сигнал No от приемника (No(Nof, ϕ)). Эта процедура повторяется для различных значений длины волны λ.

После произведенных измерений излучения от образца он удаляется и на его место устанавливается модель абсолютно черного тела, которая нагревается до температуры образца и с помощью приемника излучения фиксируется зависимость сигнала Na от длины волны λ (Na (λ)).

Измерение температуры образца и модели абсолютно черного тела производится с помощью термопар.

Угловая зависимость спектрального коэффициента излучения материала образца ελϕ, при фиксированной длине волны λf определяется по результатам измерений по следующей формуле

,

где No - сигнал от приемника при излучении образца;

Na - сигнал от приемника при излучении модели абсолютно черного тела;

Ne - сигнал от приемника при излучении экрана.

На фиг.2, для примера, представлены результаты измерений угловых зависимостей спектральных коэффициентов излучения листовой стали и эмали. Результаты представлены в виде угловой зависимости относительного спектрального коэффициента излучения , определяемого как отношение угловых значений спектрального коэффициента излучения ελϕ при соответствующем угле к его нормальному значению ελn.

Спектральные коэффициенты излучения определяют энергию, переносимую излучением. Результаты измерений показывают их существенную зависимость от направления излучения. Это указывает на необходимость получения информации о направленных излучательных характеристиках материалов. Предлагаемое устройство обеспечивает получение такой информации.

Устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов, содержащее вакуумную камеру, исследуемый образец, монохроматор и приемник излучения, отличающееся тем, что вакуумная камера снабжена охлаждаемым цилиндрическим экраном, установленным на отдельном фланце, позволяющем поворачивать экран вокруг оси, в стенке экрана выполнены узкие щели различной площади, положение которых относительно линии визирования устанавливается за счет поворота экрана, при этом угловое положение исследуемого образца обеспечивается с помощью подвески, ось вращения которой смещена относительно линии визирования на расстояние, позволяющее выводить образец из поля зрения приемника излучения.



 

Похожие патенты:

Изобретение относится к микроэлектронике. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к способу предотвращения образования настылей на фурме, проходящей в металлургическую емкость. .

Изобретение относится к области радиационной пирометрии. .

Изобретение относится к области измерительной техники. .

Изобретение относится к тепловым фотоприемникам для обнаружения монохроматического излучения дальнего инфракрасного (ИК) диапазона и определения угла прихода этого излучения.

Изобретение относится к измерительной технике. .

Изобретение относится к тепловизионной технике и может быть использовано для определения температурных полей удаленных объектов. .

Изобретение относится к средствам актинометрических измерений приходящих радиационных потоков и может быть использовано в метеорологии

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения температуры биологических объектов с высокой пространственной и температурной разрешающей способностью в процессе диагностики их состояния с использованием дополнительной информации о коэффициенте отражения локального участка поверхности на длине волны используемого лазерного излучателя

Изобретение относится к радиационной пирометрии

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике

Изобретение относится к радиационной пирометрии

Изобретение относится к устройствам для обнаружения инфракрасного излучения и может быть использовано для формирования инфракрасных изображений

Изобретение относится к прокатному производству и может быть использовано для измерения температуры полосы в процессе горячей прокатки

Пирометр // 2365882
Изобретение относится к измерительной технике

Изобретение относится к измерительной технике
Наверх